Version française / Annuaire du personnel
M. Giovanni De marco
Fonction
- Directeur du laboratoire LINP2 (Université Paris Nanterre)
- Directeur du laboratoire CeRSM – EA 2931 (Université Paris Nanterre) 2011-2019
- Directeur équipe « Analyse du Mouvement en Biomécanique, Physiologie et Imagerie» 2010-2019;
- Membre élu au Conseil Académique de la COMUE UPL 2015-2019
- Membre élu au comité d’éthique de la COMUE UPL 2016-2019
- Membre du conseil scientifique de l’ED 566 2010-à ce jour
- Membre du conseil scientifique de l’UFR STAPS Paris Nanterre 2009-à ce jour
- Responsable du parcours (Masters 1 et 2) Psychologie, Neurosciences, physiologie du mouvement et de la performance Paris Nanterre à partir de 2020
- Responsable du Master 2 Psychologie et Neurosciences du Mouvement:Exercice, Performance et Santé - UFR STAPS Paris Nanterre 2014–2019
- Membre élu du conseil scientifique du PRES UPL Paris Lumières 2012-2014
- Directeur du pôle « l’humain en devenir » (Paris Ouest Nanterre) 2012-2014
- Responsable du Master 2 contrôle Moteur - UFR STAPS Nanterre 2010-2013
- Responsable en Licence 3 de l’EC Initiation à la pratique de la Recherche 2014 –à ce jour.
Coordonnées
- Tél
- +33674610165
- giovanni.demarco@parisnanterre.fr
Disciplines enseignées
Mathematics, Statistics, Methodology, Computer Science, Biomechanics, Neurosciences, Neuroimaging, Medical Imaging;
- Development of concepts and methods in imaging associated with the fields of physics, biology, physiology, cognitive psychology and neuroscience;
- Development of concepts and methods in imaging associated with the fields of physics, biology, physiology, cognitive psychology and neuroscience;
- Study of the processes, treatments and complex visuomotor, cognitive-motor, affective and perceptual-action interactions at the cerebral level;
- Coupling and synchronization of electrophysiological devices (EMG, ECG, SCR, Eye-tracking, respiration, force, acceleration) with neuroimaging (fMRI, NIRS, EEG) and stimulation (tDCS, TMS) technics ;
- Modeling of neural circuitry to explore and analyze the integrative and adaptive mechanisms that are organized under the influence of the central, autonomic, peripheral nervous systems, and cerebral plasticity;
- Transfer of experimental paradigms and scientific knowledge in the field of physical activity and health.
- Coupling and synchronization of electrophysiological devices (EMG, ECG, SCR, Eye-tracking, respiration, force, acceleration) with neuroimaging (fMRI, NIRS, EEG) and stimulation (tDCS, TMS) technics ;
- Modeling of neural circuitry to explore and analyze the integrative and adaptive mechanisms that are organized under the influence of the central, autonomic, peripheral nervous systems, and cerebral plasticity;
- Transfer of experimental paradigms and scientific knowledge in the field of physical activity and health.
Thèmes de recherche
Spectacular progress in molecular and cellular biology and genetics has made it possible to make great strides in the knowledge of living beings, in particular in the understanding of the microscopic, competitive and homeostatic mechanisms that govern our organic life. In the extension of this fundamental work, cognitive sciences, computational neurosciences, artificial neural networks and other artificial intelligence (AI) techniques come together to try to explain how, on a meso- and macroscopic scale, the human experience and "Body-Brain-Environment" interactions participate in the emergence of our perceptions, intuitions, sensations, actions from which our judgments, our feelings, our beliefs, our moods, our ruminations built our thoughts and cerebral states of consciousness. The human brain has been self-organizing and adapting itself for hundreds of thousands of years (homo sapiens) with its billions of neurons and tens of thousands of connections per neuron which seem limitless and central in the system of living things (including animal). Its evolutionary history depends on hereditary transmission by descent and acquired experiences associated with the personal, social, cultural and technological environment which over time in a chaotic and uninterrupted flow nourishes the activity of circuits and neural networks housing our thoughts and our consciousness. The brain as a central nervous system (CNS) is not isolated. It is supplemented by other systems such as the vegetative nervous system (or ANS) which autonomously participates in the functioning of bodily organs, controls and regulates (via the sympathetic, parasympatic, enteric systems) cardiac, respiratory, vascular activity, glandular; its functional contribution to the CNS and its participation in the brain organization must be deepened, particularly in the top down and bottom up hierarchy of cognitive and mental processes. It is highly probable that the orchestrating power of the CNS associated with the ANS is a determining element in the construction of human and animal thought. The spatial and temporal organization and deployment of brain activity compels us to explore and analyze the brain as an energetic, dynamic, complex and multivariate system capable of establishing bidirectional mono and multisynaptic connections in space-time, discontinuous, transitional with more or less controlled and lasting states. The propagation of neuronal activity or brain waves over different distances (short / wide scales), with intensities (hypo / hyperconnected), powers and frequencies different rhythm and codes the brain information that takes root in these dynamic tangles stable (unstable), synchronized (desynchronized) and stochastic neural states that we try to break down and elucidate in the light of multidisciplinary knowledge and with the help of brain exploration techniques and methods of analyzing the signal extremely sophisticated. The fusion of multimodal information, brain stimulation techniques and algorithmic learning methods associated with the analysis of the activity and the functional and structural interactivity (connectivity) of neural networks provides an inovative framework for deepening the neurophysiological, psychological and cognitive mechanisms that contribute to the mental imagery of the mind, rational / irrational and the development of conscious (intentional / anticipatory) and pseudo-conscious (intuitive / instinctive) thinking. All the research work carried out in neuroimaging at LINP2 makes it possible to highlight the link that exists between the body, behavior and cognition in an interactive and multisensory manner to feed the integrative hypotheses of cerebral functioning. Imaging research is carried out in the field of experimental and cognitive neurosciences and is applied in the health sector, making it possible to elucidate the behavioral consequences of cerebral lesions / infections, the loss of integrity of neural networks and the degradation of brain functions found in certain neurodegenerative disorders such as Charcot's disease (ALS) and multiple sclerosis (MS).
To conclude, we hope to contribute to the development of a theoretical, neurobiological and computational framework of the dynamic, evolutionary and adaptive functioning of the brain and of the cerebral circuits which compose it; apply concretely this research work through the development of learning and therapeutic methods to instruct, train and (re) organize neural networks; set up educational methods (in connection with executive functions and attentional processes), neuropsychological intervention (mindfulness, meditation), electrophysiological (magnetic / electrical stimulation) and physical activity (exercises, training) to modulate / strengthen neural plasticity and improve cognitive and motor functions in healthy and pathological subjects. Finally, we hope that this research will contribute to a significant advance in knowledge on the complex and amazing functioning of the brain and human thought.
To conclude, we hope to contribute to the development of a theoretical, neurobiological and computational framework of the dynamic, evolutionary and adaptive functioning of the brain and of the cerebral circuits which compose it; apply concretely this research work through the development of learning and therapeutic methods to instruct, train and (re) organize neural networks; set up educational methods (in connection with executive functions and attentional processes), neuropsychological intervention (mindfulness, meditation), electrophysiological (magnetic / electrical stimulation) and physical activity (exercises, training) to modulate / strengthen neural plasticity and improve cognitive and motor functions in healthy and pathological subjects. Finally, we hope that this research will contribute to a significant advance in knowledge on the complex and amazing functioning of the brain and human thought.
Curriculum Vitae
1. Langley C, de Marco G, Daly S, Masuda N, Davies Smith A, Jones R, Bruce J, Thai NJ. Neural substrates of alerting dysfunction in females with Multiple Sclerosis. December 2024. Multiple Sclerosis and Related Disorders 93, 106208.
2. Rekik W, Le Hégarat-Mascle S, Ezzedini S, de Marco G. Detection of atypical attentional behaviors in young subjects. Journal of Neuroscience Methods. July 2024. Volume 407, 110141. (Q2, IF 2.7)
3. Jallouli S, Ghroubi S, Damak M, Sakka S, Elleuch M, Mhiri C, Yahia A, Driss T, de Marco G, Hammouda O. 12-week melatonin supplementation improved dynamic postural stability and walking performance in persons living with multiple sclerosis: A randomized controlled trial. Behavioural Brain Research. 2024-08, p.115191. (Q2, IF 2.6)
4. Torkhani E, Bennequin D, de Marco G. Role of the Cerebellum in the construction of functional and geometrical spaces. Cerebellum, 2024, Apr 16, P 1-26 (Q1, IF 3.5).
5. Jallouli S, Maalou R, Ghroubi S, Kammoun R, Damak M Sakka S, Driss T, de Marco G, Mhiri C, Habib Elleuch M, Feki W, Hammouda O. Benefits of self-paced concurrent training on lung function, cardiopulmonary fitness and fatigue perception in patients with multiple sclerosis.
Neurodegenerative Disease Management, 2024. Volume 14, N°5, P 173-187 (Q1, IF 2.3)
6. Ezzedini S, Ben Jebara S, Abidi M, de Marco G. Influence of Mental Training of Attentional Control on Autonomic Arousal Within the Framework of the Temporal Preparation of a Force Task. 2023. Cognitive Science 47, 1-20.(Q1, IF 2.5)
7. Langley† C, Masuda N, Godwin S, de Marco G, Smith AD, Jones R, Bruce J and Thai NJ. Dysfunction of basal ganglia functional connectivity associated with subjective and cognitive fatigue in multiple sclerosis. Front. Neuroscience 2023. 17:1194859. doi: 10.3389/fnins.2023.1194859 (Q1, IF : 4.3)
8. Arcangeli, D.; Dubois, O.; Roby-Brami, A.; Famié, S.; de Marco, G.; Arnold, G.; Jarrassé, N.; Parry, R. Human Exteroception during Object Handling with an Upper Limb Exoskeleton. Sensors 2023, 23, 5158. https://doi.org/10.3390/s23115158.(Q1, IF : 3.9)
9. Abidi M, Pradat PF, Termoz N, Couillandre A, Bede P, de Marco G. Motor Imagery in ALS: an fMRI study of postural control. Neuroimage Clinical, 2022 (Q1, IF : 4.891).
10. Vallée R†, Vallée A, Vallée JN, Abidi M, Couillandre A, Termoz N, Pradat PF, de Marco G. Theoretical discrimination index of postural instability in amyotrophic lateral sclerosis. Sci Rep. 2022; 12: 2430 (IF : 4.997)
11. Torkhani E, Dematte E, Slawinski J, Csillik A, Gay MC, Bensmaïl D, Heinzlef O, de Marco G. Improving Health of People With Multiple Sclerosis From a Multicenter Randomized Controlled Study in Parallel Groups: Preliminary Results on the Efficacy of a Mindfulness Intervention and Intention Implementation Associated With a Physical Activity Program. Front Psychol. 2021 Dec 24;12:767784. (IF : 4.232)
12. Grami F; de Marco G; Bodranghien F, Manto M; Habas C. Cerebellar transcranial direct current stimulation reconfigurates brain networks involved in motor and mental imagery. The Cerebellum. August, 2021, P2-12 (Q1, IF : 3.5).
13. Grami F; de Marco G; Bodranghien F, Manto M; Habas C. Cerebellar transcranial direct current stimulation reconfigurates static and dynamic functional connectivity of the resting-state networks. Cerebellum & Ataxias. 2021. 8, Article number: 7. (Q2, IF : 1.5).
14. Abidi M, de Marco G, Grami* F, Termoz N, Couillandre A, Querin G, Bede P, Pradat PF. J Magn Reson Imaging. 2021 Jan ;53(1):223-233. doi: 10.1002/jmri.27335. Epub 2020 Sep 7. (Q1, IF : 5.119)
15. Abidi M, de Marco G, Couillandre A, Feron M, Mseddi E, Termoz N, Querin G, Pradat PF, Bede P. Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol. 2020 Jan;27(1):121-128 (Q1, IF : 6.288).
16. Daly S, Thai J, Belkhiria C, Langley† C, Le Blanche A, de Marco G. Temporal deployment of attention by mental training: an fMRI study. Cognitive, affective and behavioral neuroscience. 2020 May (Q1, IF: 3.526)
17. Saidane† Y, Parry R, Belkhiria C, Ben Jebara S, Driss T, de Marco G. Effects of mental effort on premotor muscle activity and maximal grip. Journal of Motor Behavior. 2020 May (Q3, IF 1.31)
18. Souissi W, Hammouda O, Ayachi M, Ammar A, Khcharem A, de Marco G, Souissi M, Driss T. Partial sleep deprivation affects endurance performance and psychophysiological responses during 12-minute self-paced running exercise. Physiol Behav. 2020 Dec 1;227:113165. doi: 10.1016/j.physbeh.2020.113165. Epub 2020 Sep 3. (Q1, IF : 3.742)
19. Belkhiria C, Mssedi E, Habas C, Driss T, de Marco G. Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task. Cerebellum. 2019 Apr;18(2):203-211. (Q1, IF: 3.5)
20. Feron M, Couillandre A, Mseddi E, Termoz N, Abidi M, Pradat PF, de Marco G. Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol. 2018 Sep;265(9):2125-2136. (Q1, IF: 6.682)
21. Abidi M, Bruce J, Le Blanche A, Bruce A, Jarmolowicz DP, Csillik A, Thai NJ, Lim SL, Heinzlef O, de Marco G. Neural mechanisms associated with treatment decision making: an fMRI study. Behav Brain Res. 2018 april 20, 349, 54-62. (Q1, IF: 2.77)
22. Belkhiria C, de Marco G, Driss T. Effects of verbal encouragement on force and electromyographic activations during handgrip exercise. J Sports Med Phys Fitness. 2018, May;58(5):750-757. (Q2, IF 1.3)
23. Belkhiria C, Driss T, Habas C, Jaafar H, Guillevin R, de Marco G. Exploration and identification of cortico-cerebellar-brainstem closed loop during a motivational-motor task: an fMRI study. The Cerebellum, 2017. (Q1, IF: 3.20)
24. Bodranghien F, Mahé H, Baude B, Manto MU, Busegnies Y, Camut S, Habas C, Marien P, de Marco G, van Dun K. The Click Test: A Novel Tool to Quantify the Age-Related Decline of Fast Motor Sequencing of the Thumb. Curr Aging Sci. 2017 May 10. (Q3, IF 1.51)
25. Thompson S, Daly S, Le Blanche A, Abidi M, Belkhiria C, Driss T, de Marco G. fMRI Randomized Study of Mental and Motor Task Performance and Cortisol: Levels to Potentiate Cortisol as a New Diagnostic Biomarker. Journal of Neurology and Neuroscience. 2016. Vol. 7 No. 2: 92. (IF 1.45)
2. Rekik W, Le Hégarat-Mascle S, Ezzedini S, de Marco G. Detection of atypical attentional behaviors in young subjects. Journal of Neuroscience Methods. July 2024. Volume 407, 110141. (Q2, IF 2.7)
3. Jallouli S, Ghroubi S, Damak M, Sakka S, Elleuch M, Mhiri C, Yahia A, Driss T, de Marco G, Hammouda O. 12-week melatonin supplementation improved dynamic postural stability and walking performance in persons living with multiple sclerosis: A randomized controlled trial. Behavioural Brain Research. 2024-08, p.115191. (Q2, IF 2.6)
4. Torkhani E, Bennequin D, de Marco G. Role of the Cerebellum in the construction of functional and geometrical spaces. Cerebellum, 2024, Apr 16, P 1-26 (Q1, IF 3.5).
5. Jallouli S, Maalou R, Ghroubi S, Kammoun R, Damak M Sakka S, Driss T, de Marco G, Mhiri C, Habib Elleuch M, Feki W, Hammouda O. Benefits of self-paced concurrent training on lung function, cardiopulmonary fitness and fatigue perception in patients with multiple sclerosis.
Neurodegenerative Disease Management, 2024. Volume 14, N°5, P 173-187 (Q1, IF 2.3)
6. Ezzedini S, Ben Jebara S, Abidi M, de Marco G. Influence of Mental Training of Attentional Control on Autonomic Arousal Within the Framework of the Temporal Preparation of a Force Task. 2023. Cognitive Science 47, 1-20.(Q1, IF 2.5)
7. Langley† C, Masuda N, Godwin S, de Marco G, Smith AD, Jones R, Bruce J and Thai NJ. Dysfunction of basal ganglia functional connectivity associated with subjective and cognitive fatigue in multiple sclerosis. Front. Neuroscience 2023. 17:1194859. doi: 10.3389/fnins.2023.1194859 (Q1, IF : 4.3)
8. Arcangeli, D.; Dubois, O.; Roby-Brami, A.; Famié, S.; de Marco, G.; Arnold, G.; Jarrassé, N.; Parry, R. Human Exteroception during Object Handling with an Upper Limb Exoskeleton. Sensors 2023, 23, 5158. https://doi.org/10.3390/s23115158.(Q1, IF : 3.9)
9. Abidi M, Pradat PF, Termoz N, Couillandre A, Bede P, de Marco G. Motor Imagery in ALS: an fMRI study of postural control. Neuroimage Clinical, 2022 (Q1, IF : 4.891).
10. Vallée R†, Vallée A, Vallée JN, Abidi M, Couillandre A, Termoz N, Pradat PF, de Marco G. Theoretical discrimination index of postural instability in amyotrophic lateral sclerosis. Sci Rep. 2022; 12: 2430 (IF : 4.997)
11. Torkhani E, Dematte E, Slawinski J, Csillik A, Gay MC, Bensmaïl D, Heinzlef O, de Marco G. Improving Health of People With Multiple Sclerosis From a Multicenter Randomized Controlled Study in Parallel Groups: Preliminary Results on the Efficacy of a Mindfulness Intervention and Intention Implementation Associated With a Physical Activity Program. Front Psychol. 2021 Dec 24;12:767784. (IF : 4.232)
12. Grami F; de Marco G; Bodranghien F, Manto M; Habas C. Cerebellar transcranial direct current stimulation reconfigurates brain networks involved in motor and mental imagery. The Cerebellum. August, 2021, P2-12 (Q1, IF : 3.5).
13. Grami F; de Marco G; Bodranghien F, Manto M; Habas C. Cerebellar transcranial direct current stimulation reconfigurates static and dynamic functional connectivity of the resting-state networks. Cerebellum & Ataxias. 2021. 8, Article number: 7. (Q2, IF : 1.5).
14. Abidi M, de Marco G, Grami* F, Termoz N, Couillandre A, Querin G, Bede P, Pradat PF. J Magn Reson Imaging. 2021 Jan ;53(1):223-233. doi: 10.1002/jmri.27335. Epub 2020 Sep 7. (Q1, IF : 5.119)
15. Abidi M, de Marco G, Couillandre A, Feron M, Mseddi E, Termoz N, Querin G, Pradat PF, Bede P. Adaptive functional reorganization in amyotrophic lateral sclerosis: coexisting degenerative and compensatory changes. Eur J Neurol. 2020 Jan;27(1):121-128 (Q1, IF : 6.288).
16. Daly S, Thai J, Belkhiria C, Langley† C, Le Blanche A, de Marco G. Temporal deployment of attention by mental training: an fMRI study. Cognitive, affective and behavioral neuroscience. 2020 May (Q1, IF: 3.526)
17. Saidane† Y, Parry R, Belkhiria C, Ben Jebara S, Driss T, de Marco G. Effects of mental effort on premotor muscle activity and maximal grip. Journal of Motor Behavior. 2020 May (Q3, IF 1.31)
18. Souissi W, Hammouda O, Ayachi M, Ammar A, Khcharem A, de Marco G, Souissi M, Driss T. Partial sleep deprivation affects endurance performance and psychophysiological responses during 12-minute self-paced running exercise. Physiol Behav. 2020 Dec 1;227:113165. doi: 10.1016/j.physbeh.2020.113165. Epub 2020 Sep 3. (Q1, IF : 3.742)
19. Belkhiria C, Mssedi E, Habas C, Driss T, de Marco G. Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task. Cerebellum. 2019 Apr;18(2):203-211. (Q1, IF: 3.5)
20. Feron M, Couillandre A, Mseddi E, Termoz N, Abidi M, Pradat PF, de Marco G. Extrapyramidal deficits in ALS: a combined biomechanical and neuroimaging study. J Neurol. 2018 Sep;265(9):2125-2136. (Q1, IF: 6.682)
21. Abidi M, Bruce J, Le Blanche A, Bruce A, Jarmolowicz DP, Csillik A, Thai NJ, Lim SL, Heinzlef O, de Marco G. Neural mechanisms associated with treatment decision making: an fMRI study. Behav Brain Res. 2018 april 20, 349, 54-62. (Q1, IF: 2.77)
22. Belkhiria C, de Marco G, Driss T. Effects of verbal encouragement on force and electromyographic activations during handgrip exercise. J Sports Med Phys Fitness. 2018, May;58(5):750-757. (Q2, IF 1.3)
23. Belkhiria C, Driss T, Habas C, Jaafar H, Guillevin R, de Marco G. Exploration and identification of cortico-cerebellar-brainstem closed loop during a motivational-motor task: an fMRI study. The Cerebellum, 2017. (Q1, IF: 3.20)
24. Bodranghien F, Mahé H, Baude B, Manto MU, Busegnies Y, Camut S, Habas C, Marien P, de Marco G, van Dun K. The Click Test: A Novel Tool to Quantify the Age-Related Decline of Fast Motor Sequencing of the Thumb. Curr Aging Sci. 2017 May 10. (Q3, IF 1.51)
25. Thompson S, Daly S, Le Blanche A, Abidi M, Belkhiria C, Driss T, de Marco G. fMRI Randomized Study of Mental and Motor Task Performance and Cortisol: Levels to Potentiate Cortisol as a New Diagnostic Biomarker. Journal of Neurology and Neuroscience. 2016. Vol. 7 No. 2: 92. (IF 1.45)
Corps
PROFESSEUR DES UNIVERSITES
COLLABORATIONS DE RECHERCHE
• Clinical Research and Imaging Center de Bristol (UK)
• University of Missouri-Kansas City (US)
• Institut Cerveau Moelle (ICM) Pitié-Salpêtrière (Paris)
• Hôpitaux parisiens Pitié-Salpêtrière, Quinze-Vingts et Lariboisière
• Hôpitaux périphériques de Garches, Cergy, Poissy
• Hôpitaux de province : Poitiers, Tours
COLLABORATIONS DE RECHERCHE
• Clinical Research and Imaging Center de Bristol (UK)
• University of Missouri-Kansas City (US)
• Institut Cerveau Moelle (ICM) Pitié-Salpêtrière (Paris)
• Hôpitaux parisiens Pitié-Salpêtrière, Quinze-Vingts et Lariboisière
• Hôpitaux périphériques de Garches, Cergy, Poissy
• Hôpitaux de province : Poitiers, Tours
Informations complémentaires
Mis à jour le 16 mars 2025
Directeur du laboratoire LINP2 (UPN)
UFR STAPS
200 Avenue de la République
92001 NANTERRE CEDEX, France
gdemarco@parisnanterre.fr
Tel: 0033 +1 40 97 57 55
UFR STAPS
200 Avenue de la République
92001 NANTERRE CEDEX, France
gdemarco@parisnanterre.fr
Tel: 0033 +1 40 97 57 55