Nanterre La Défense

Paris Ouest

université

eme

Smart control of a soft robotic hand prosthesis Astrid RUBIANO FONSECA Supervisors: Laurent GALLIMARD

Olivier POLIT

9 December 2016

Laboratoire Energétique Mécanique Electromagnétisme

Université Paris Ouest Nanterre La Défense

50, rue de Sèvres, 92410 Ville d'Avray, France

Motivation

2009 – 2013 10 253 amputees (Vicepresidencia, 2013)

Commercial prostheses

- Hard to use: difficult learning
- Low adaptability: rigid mechanism
- Low sensor capacity: limited to motor activity

Soft robotics

Unconventional materials, Elastic, Compliant

Target of the thesis

Our goal is to provide:

- A more intuitive human-prosthesis interface based on sEMG using a wearable device
- A soft fingertip for steady grasping
- Fingertip sensor for hybrid control
- Softness in robotic finger using soft materials

ProMain

The project has a highly multidisciplinary content, requiring a variety of skills that can be summarized below

- Data processing
- Robotics
- Artificial intelligence
- Embedded system
- Control
- Real-time computing

- Bio-mechanics
- Mechanical
- Modeling
- Numerical methods
- Multi-field coupling
- Smart materials
- Structural analysis

Leme

Outline

1. Introduction

- 2. Human hand interface
- 3. Hand prosthesis control
- 4. Development of a soft link
- 5. Conclusion and perspectives

ProMain hands

- Intuitive control based on sEMG
- Compliant (soft fingertip sensor and soft link)
- Modular
- 3D-Printed

New functional scheme

Leme

Outline

1. Introduction

- 2. Human hand interface
- 3. Hand prosthesis control
- 4. Development of a soft link
- 5. Conclusion and perspectives

Electromyography signals (EMG)

- Produced during muscle contraction
- Contains movements information
- Superficial (sEMG) or intra-muscular (iEMG)

sEMG and Kinematic relation

sEMG are carriers of information about subject's movements

Features from sEMG signal

- Mean frequency (MF)
- Entropy (*H*)

(A. Rubiano et al. 2015)

Upper limb movements

Experiment: Materials

Markers sEMG

VICON Camera

Acquisition

Experiment: Data processing

- 3 Subjects performing elbow flexion an extension
- Measures of sEMG produced by Biceps and Triceps muscle
- Features extracted from cropped signals are used in movement classification

Movement classification based on myoelectric signals

Support Vector Machines (Cortes and Vapnik, 1995) (Boser, *et al.* 1992)

- (i) Supervise learning model
- (ii) Find an separator hyperplane that has the largest possible margin
- (iii) Formulation of optimal margin(iv) Linear, soft margin, non-linear

Classification of extracted features during elbow flexion and extension

Grasping gesture out of laboratory conditions

Upper limb movement (elbow flexion – extension)

> In motion caption laboratory conditions: wireless sEMG

> > Motion detection: VICON

2 electrodes and 2 features: Feature space of 4 dimensions

Grasping gesture

(open - close hand)

Out of laboratory condition: wearable device MyoArmbandTM

No motion detection: algorithm required to detect motion inception

8 electrodes and 1 feature: Feature space of 8 dimensions

MyoArmbandTM sEMG sensor

From 2 features (H, MF) dual channel To 1 feature (H) 8 channels

(a) Frontal muscles.

(b) Posterior muscles.

Grasping recognition: Hand open – close

Identify movement inception

Recognition of prehension patterns

Feature space $X \in \mathbb{R}^8$ composed of the normalized entropies $\widehat{H}(\boldsymbol{s}_{1i})$ to $\widehat{H}(\boldsymbol{s}_{8i})$ PatternSoft margin SVMGesture grasping

Experimental analysis and model validation

Display

Capture, Process, and Save

Results of grasping gesture recognition

Mean success rate: 97.5%

Subject	Open trials		Close trials		Overall	
	Trials	Success [%]	Trials	Success [%]	Trials	Success [%]
1	20	100	20	100	40	100
2	20	95	20	100	40	97.5
3	20	100	20	90	40	95

Leme

Outline

1. Introduction

- 2. Human hand interface
- 3. Hand prosthesis control
- 4. Development of a soft link
- 5. Conclusion and perspectives

Hand prosthesis control

ProMain-I hand

Block-diagram of ProMain-I hybrid control

Parameters	Symbol	Value
Rotor inertia	J_M	0.0483
Inductance	L	0.0164
Resistance	R	0.2168
Ball bearing	b_c	0.0931
Motor constant	K_T	0.2677

Soft force fingertip sensor

Compliant

 Measure force in the fingertips

Patent N 1655991 Application June 2016

Experimental result using RTV3535

Experimental result using RTV127

Non parametric identification

$$G_f(s) = \frac{f_j(s)}{\Delta\theta(s)} = \frac{13.2669}{s^2 + 26.5338s + 217.2671}$$

Constants	Symbol	Values
Gain	k_{op}	30.0
Damping ratio	ζ	0.9
Natural frequency	w_{n_f}	14.741

Results for hybrid force position control

Resulting movements

- Classical grasping gestures
- Precision grasping gestures
 - Lateral pinch
 - Precision disk
 - Prismatic 3 fingers
 - Tripod
- Power grasping gestures
 - Medium wrap
 - Power disk

Classical Grasping Gestures

Precision Grasping Gestures (1)

Precision Grasping Gesture (2)

Power Grasping Gesture

Power Disk

Leme

Outline

1. Introduction

- 2. Human hand interface
- 3. Hand prosthesis control
- 4. Development of a soft link
- 5. Conclusion and perspectives

ProMain-II

Development a soft link

Soft link design

Angles performed during flexion/extension soft robotic finger

Conclusion

Kinematic Vs sEMG	Features extractionFeatures behavior	
Wearable movement recognition	 Entropy based analysis Out of laboratory conditions 97.5% classification success 	
Smart control of soft prosthesis	Hybrid controllerFingertip force sensor	
ProMain-II hand	• Soft link	

Perspectives

Acknowledgement

I express my gratitude to the Université Paris Lumières UPL for the financial support through the ProMain project.

I also acknowledge the Universidad Militar Nueva Granada Bogota Colombia for the financial support of my PhD.

I also express my gratitude to Cogito for their collaboration and support during my Ph.D.

I acknowledge the Université franco-allemande Deutsch-Franz[•]osische Hochschule for the funding of my visit to the Institute of Solid Mechanics at TU Dresden Nanterre La Défense

Paris Ouest

université

eme

Smart control of a soft robotic hand prosthesis Astrid RUBIANO FONSECA Supervisors: Laurent GALLIMARD

Olivier POLIT

9 December 2016

Laboratoire Energétique Mécanique Electromagnétisme

Université Paris Ouest Nanterre La Défense

50, rue de Sèvres, 92410 Ville d'Avray, France