Nanterre La Défense

Paris Ouest

université

eme

Development of an artificial muscle for a soft robotic hand prosthesis José Luis RAMIREZ ARIAS Supervisors: Laurent GALLIMARD Olivier POLIT 9 December 2016

Energétique Mécanique Electromagnétisme

Laboratoire Université Paris Ouest Nanterre La Défense

50, rue de Sèvres, 92410 Ville d'Avray, France

Context

2009 – 2013 10 253 amputees (Vicepresidencia, 2013)

1

Advances in robotic hand prosthesis

Enhance hand prostheses capabilities

- Emulating human hand
 adaptability and flexibility
- Development better adapted
 mechanism
- Using unconventional and smart materials
- Improving actuators for hand prostheses requirements

Research axes

Leme

Outline

- 1. Introduction
- 2. Analysis of the human hand
- 3. The ProMain-I Prosthesis
- 4. SMA based artificial muscle
- 5. Conclusions and perspectives

Introduction

Research about actuation strategies

Electric

Pneumatic

Hydraulic

Manual

Smart Materials

Approach to develop a new artificial muscle

Approach workflow

Leme

Outline

1. Introduction

- 2. Analysis of the human hand
- 3. The ProMain-I Prosthesis
- 4. SMA based artificial muscle
- 5. Conclusions and perspectives

Evaluation of the human hand

Bones and joints of the human hand

Equivalent mechanical model

Grasping analysis approach

Most used grasping gestures

Medium wrap

b Light tool

Prismatic 4 fingers

Prismatic 3 fingers

Thumb	VF1	VF2	VF3
Rot (Abd)	т	II-III	
	I	II-V	
Rot (Abd)	Ι	II-V	Р
	-		
Rot (Abd)	Ι	II-III	

Prismatic 2 fingers

Precision disk

Tripod

- Thumb rotated
- Three fingers
- Fingers II-V have a similar position

Workflow proposed to identify hand requirements regarding force

New Hill based model

Hill's equivalent models are suitable to qualify the muscle's behavior through the comparison with mechanical elements.

Measure of fingertip force

• Five healthy subjects

- Aged between 24 and 30 years old
- Each subject perform five trials
- Trials are followed of 5 min breaks to avoid muscles fatigue

Subject	Mean pinch	Standard
	force [N]	deviation [N]
1	6.70	1.12
2	6.45	0.58
3	4.97	0.48
4	6.66	0.86
5	4.78	0.65

 $0.18s < t_s < 0.45s$ Standard deviation 0.10s

Hand prosthesis requirements

- Merging movements.
- Viscoelastic actuation behavior.
- MCP, PIP, and DIP flexion 90°.
- Fingertip force [4.78N, 6.70N].
- Settling time [0.18s, 0.45s].

Leme

Outline

- 1. Introduction
- 2. Analysis of the human hand
- 3. The ProMain-I Prosthesis
- 4. SMA based artificial muscle
- 5. Conclusions and perspectives

Description of the ProMain-I robotic hand

- Three fingers: required for the chosen grasping gestures.
- Under-actuated: improve size, weight, and electrical requirements

Thumb is abducted Index and middle

abduction angle = 15°

• Fingers perform up to 90° rotation during flexion-extension

Soft epicyclic mechanism

Proximal phalange actuation

Under-actuated movement of medial (MP) and distal (DP) phalanx

New DHKK-SRQ kinematic model

Rotation θ_i around z_i . Rotation α_i around x_{i-1} . Translation a_i along of x_{i-1} . Translation d_i along of z_i . **DHKK** Parameterization θ_{j2} Quaternions formulations $\mathbb{U} = [[\cos(\gamma/2), \vec{u}\sin(\gamma/2)]]$ $\mathbb{H} = \llbracket 0, \vec{h} \rrbracket$ $\llbracket 0, \vec{h}' \rrbracket = \llbracket \mathbb{U} \mathbb{H} \overline{\mathbb{U}} \rrbracket$

 Z_{if}

 y_{j2}

 S_{j2}

 y_{i1}

 S_{j3}

 β_{j3}

 θ_{j3}

- **Improves** the **representation of rotations** that arise from soft robotics.
- Do not require to increase **model size** to formulate extra rotations.
- Formulate soft robot's rotations even in the neighborhood of rotational singularities.

(Ramirez et al., 2015)

Dynamic model

Joint rotation analysis

$$\theta_{j2} = \theta_{j3} = 0.9 \ \theta_{j1}$$

Actuation requirements definition

Actuation requirements

Leme

Outline

- 1. Introduction
- 2. Analysis of the human hand
- 3. The ProMain-I Prosthesis
- 4. SMA based artificial muscle
- 5. Conclusions and perspectives

Artificial muscle design methodology

Smart material actuation principle

Settling time of smart materials

Active strain and actuation force comparison

-IPMC -SMA

 $17.8N \le f_a \le 25.1N$ $4.8N \le f_b \le 6.7N$

SMA phase transformation

SMA-based actuator modeling

Constitutive model of SMA

Experiment for measuring parameters

Simulation vs experimental results

Stiffness control requirement

Tendon operating principle

Current state of the research

- Definition of actuation requirements
- New soft epicyclic mechanism
- New SMA-based actuator
- SMA-based soft epicyclic mechanism

Leme

Outline

- 1. Introduction
- 2. Analysis of the human hand
- 3. The ProMain-I Prosthesis
- 4. SMA based artificial muscle
- 5. Conclusions and perspectives

Conclusion

Soft kinematic link, FR 1656673, Jun 2016

Soft fingertip force sensor, FR 1655991, Jun 2016

Acknowledgements

I express my gratitude to the **Université Paris Lumières** UPL for the financial support through the ProMain project.

I also acknowledge **Colciencias - Colombia** for the financial support of my Ph.D.

I also express my gratitude to **CogitoBio** for their collaboration and support during my Ph.D.

I acknowledge the Université franco-allemande Deutsch-Franz[•]osische Hochschule for the funding of my visit to the Institute of Solid Mechanics at TU Dresden Nanterre La Défense

Paris Ouest

université

eme

Development of an artificial muscle for a soft robotic hand prosthesis **Thank You**

9 December 2016

Energétique Mécanique Electromagnétisme Laboratoire Université Paris Ouest Nanterre La Défense 50, rue de Sèvres, 92410 Ville d'Avray, France