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Context

2009 – 2013 

10 253  amputees
(Vicepresidencia, 2013)
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Enhance hand prostheses capabilities
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• Emulating human hand

adaptability and flexibility

• Development better adapted

mechanism

• Using unconventional and

smart materials

• Improving actuators for

hand prostheses requirements
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Research axes
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Outline
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2. Analysis of the human hand

3. The ProMain-I Prosthesis

4. SMA based artificial muscle

5. Conclusions and perspectives
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Research about actuation strategies
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Approach to develop a new artificial muscle

Smart 
materials 

Robot 
Mechanism
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Approach workflow

Biomechanical 
requirements

Robotic 
mechanism

Actuation 
Requirements

Artificial 
muscle

• Biomechanics

• Grasping 

• Force assessment

• Design

• Modeling

• Assessment

• Biomechanics

+

• Robotics

• Smart material 

selection

• Actuator design

• New prosthesis
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Evaluation of the human hand
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Bones and joints of the human hand
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Equivalent mechanical model
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Grasping analysis approach

What is 
required 

to do

What 
the hand 
can do

Grasping Taxonomy

Robotic 
hands 

Hand 
prostheses
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Most used grasping gestures

Prismatic 

2 fingers
Precision disk Tripod

Thumb VF1 VF2 VF3

Rot (Abd) I
II-III

II-V

Rot (Abd)
I

II-V P
-

Rot (Abd) I II-III

• Thumb rotated

• Three fingers

• Fingers II-V have a similar position

15

Medium wrap
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Workflow proposed to identify hand 
requirements regarding force

Muscles

Tendons

Capsules

Ligaments

Grasping

Experiments

Dynamics

behavior

+
+

Force

requirements

Human hand Biomechanical model Results

Force

measure
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New Hill based model

Muscle

𝐶𝐸 : Contractile element

𝑘𝑝𝑒𝑒 : Parallel elastic element

𝑘𝑠𝑒𝑒 : Serial elastic element

𝛼𝑚 : Pennation angle

Tendon

𝑘𝑇𝑒𝑒 : Tendon elastic element

𝑏𝑇𝑑𝑒 : Tendon damping 

element

Hill’s equivalent models are suitable to qualify the muscle’s behavior through the comparison 

with mechanical elements. 
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Measure of fingertip force

Dynamometric 

measures

Mean signal 

analysis
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Single signal 

capture

• Five healthy subjects

• Aged between 24 and 30

years old

• Each subject perform five

trials

• Trials are followed of 5 min

breaks to avoid muscles

fatigue



Mean value of the human pinch force

0.18𝑠 < 𝑡𝑠 < 0.45𝑠

Standard deviation 0.10s
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Hand prosthesis requirements

• Merging movements.

• Viscoelastic actuation behavior.

• MCP, PIP, and DIP flexion 90°.

• Fingertip force [4.78N, 6.70N].

• Settling time [0.18s, 0.45s].
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Description of the ProMain-I robotic hand

Grasping

Preparation

adduction

abduction

passive

chassis

Execution

flexion

extension

active

fingers

• Thumb is abducted

• Index and middle

abduction angle = 15°
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• Three fingers: required for the chosen

grasping gestures.

• Under-actuated: improve size, weight,

and electrical requirements

• Fingers perform up to

90° rotation during

flexion-extension



Soft epicyclic mechanism

 Flexion

 Extension

CCW

CW
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Proximal phalange actuation

CW
Pulley fixed to 

chassis

Chassis
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Under-actuated movement of medial (MP) 
and distal (DP) phalanx

CW

Flexion

Fixed to 

chassis

Chassis Fixed to PPProximal 

phalange (PP)
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New DHKK-SRQ kinematic model

Rotation 𝜃𝑖around 𝑧𝑖.
Rotation 𝛼𝑖 around 𝑥𝑖−1.

Translation 𝑎𝑖 along of 𝑥𝑖−1.

Translation 𝑑𝑖 along of 𝑧𝑖.
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𝑦𝑗1 𝑧𝑗1

𝑦𝑗2

𝑧𝑗2𝑦𝑗3

𝑧𝑗3

𝑥𝑗𝑓

𝑦𝑗𝑓

𝑧𝑗𝑓

𝑥𝑗3

𝑥𝑗2

𝑥𝑗1

𝜃𝑗1

𝜃𝑗2

𝜃𝑗3

𝛽𝑗2

𝛽𝑗1

𝛽𝑗3

𝛼𝑗1

𝛼𝑗2

𝛼𝑗3
𝑆𝑗3

𝑆𝑗2

𝑆𝑗2

• Improves the representation

of rotations that arise from

soft robotics.

• Do not require to increase

model size to formulate extra

rotations.

• Formulate soft robot's

rotations even in the

neighborhood of rotational

singularities.

(Ramirez et al., 2015)

DHKK Parameterization

Quaternions formulations



Dynamic model

External forces

Inertial forces
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Position tracking
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Joint rotation analysis

P
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D

IP
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Actuation requirements definition

Kinematic

model

Dynamic 

model

Experiment

Position

data

Measured human 

force

Inverse 

computing

Torque 

computing

Joints and fingertip positions 

𝑥1, 𝑦1, … , 𝑥𝑓, 𝑦𝑓
𝑓𝑗

Joint angles

𝜃1, 𝜃2, 𝜃3

Calculated

input torque

𝐶𝑗1
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Actuation requirements

Settling time: [0.18s, 0.45s]

Joint rotation: 90°

Torque: [124.7Nmm,175.8Nmm]

Dynamometric 

Measures

4.78N≤ 𝐹𝑗≤ 6.70N

Kinematic

+

Dynamic
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Artificial muscle design methodology

Biomechanical 
requirements

Robotic 
mechanism

Actuation 
Requirements

Artificial 
muscle

Ionic Polymer Metal Composite (IPMC) 

Electrolyte gels (E. gels)

Conductive Polymers (CPs)

Piezoelectric Ceramics (PCs)

Rheological Fluids (R. Fluids) 

Electronic ElectroActive Polymers 

(E._EAP)

Shape Memory Alloys (SMAs) 
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Bending (B) based

Smart material actuation principle

𝑓𝑏

Elongation (E) based

𝜀𝑎 ≥ 0.045

𝑟 = 7𝑚𝑚

124.7Nmm ≤ 𝐶𝑗1≤175.8Nmm

𝜀𝑎 =
∆𝑙

𝑙0
𝑙0𝑓𝑎

𝑙0

𝑠 = 𝑟𝜃𝑗1𝑟

𝜃𝑗1
𝜀𝑏 =

∆𝑙ℎ
𝑙0

17.8N ≤ 𝑓𝑎≤25.1N 𝜀𝑏 ≥ 0.5 4.8N ≤ 𝑓𝑏≤6.7N
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Settling time of smart materials

[0.18s, 0.45s]
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0 20 40 60

IPMC

PCs

R. Fluid

SMA

Active strain and actuation force comparison 

BE

𝜀𝑎 ≥ 4.5%

𝜀𝑏 ≥ 50%
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SMA phase transformation
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SMA-based actuator modeling 

𝐶

𝐶

Kinematic 

governing equation  

Temperature 

governing equation

Constitutive model of SMA 

𝑓𝑆𝑀𝐴

𝑓𝑘
𝑏  𝜃𝐽  𝜃

𝐼
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Constitutive model of SMA 

Stress

Strain

Transformation 

strain

Martensite

volume fraction

Based on Gibbs 𝑮 and 

Helmholtz 𝜳 free energies 

𝜀

𝜎 Kinematic 

governing equation

Temperature

governing equation

Electric Current

Rotation
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Manufacturer

Measured

Identified

Experiment for measuring parameters
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Simulation vs experimental results
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Stiffness control requirement

𝐹𝑇

𝐹𝑇
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Tendon operating principle

𝐹𝑇

𝐹𝑇

∆𝑙

𝑙

Twinned 

martensite

Detwinned

Martensite

𝐹𝑇

𝐹𝑇

Austenite

 Flexion tendon SMA wire

𝑙

𝑇 = 𝑓 𝑢, 𝑖, 𝑡
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Current state of the research 

44

• New SMA-based actuator • SMA-based soft epicyclic

mechanism
• Definition of actuation

requirements

• New soft epicyclic mechanism
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•Flexion 90°

•F=[4.78N, 6.70N]

•𝑡𝑠 =[0.18s, 0.45s]

•SMA-based actuator

•Model, identification and 
simulation 

•SMA-based epicyclic

•[124.7Nmm,175.8Nmm]

•Artificial muscle design 
methodology

•Soft epicyclic
mechanism

•DHKK-SRQ

Conclusion

ProMain-I
Prosthesis 

requirements

Actuation 
requirements

SMA- based 
actuator 

ProMain-II
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Hand mechanism, FR 1656914, Jul 2016

Soft kinematic link, FR 1656673, Jun 2016 Soft fingertip force sensor, FR 1655991, Jun 2016



Perspectives

• Test and validation in 3D

• Test ProMain-II using motion capture laboratory.
DHKK-SRQ

• Quantify the advantage of stiffness control
SMA-based soft 

epicyclic mechanism

• Modeling and assessment of IPMCs to improve hand 
mechanism

• Development of a hybrid actuation system using IPCMs
Smart materials
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