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Abstract : Harris Markov chains make their appearance in many areas of
statistical modeling, in particular in time series analysis. Recent years have
seen a rapid growth of statistical techniques adapted to data exhibiting this
particular pattern of dependence. In this paper an attempt is made to present
how renewal properties of Harris recurrent Markov chains or of specific exten-
sions of the latter may be practically used for statistical inference in various
settings. When the study of probabilistic properties of general Harris Markov
chains may be classically carried out by using the regenerative method (cf
[82]), via the theoretical construction of regenerative extensions (see [62]),
statistical methodologies may also be based on regeneration for general Har-
ris chains. In the regenerative case, such procedures are implemented from
data blocks corresponding to consecutive observed regeneration times for the
chain. And the main idea for extending the application of these statistical
techniques to general Harris chains X consists in generating first a sequence
of approximate renewal times for a regenerative extension of X from data
X1, ..., Xn and the parameters of a minorization condition satisfied by its
transition probability kernel, and then applying the latter techniques to the
data blocks determined by these pseudo-regeneration times as if they were
exact regeneration blocks. Numerous applications of this estimation principle
may be considered in both the stationary and nonstationary (including the
null recurrent case) frameworks. This article deals with some important pro-
cedures based on (approximate) regeneration data blocks, from both practical
and theoretical viewpoints, for the following topics: mean and variance esti-
mation, confidence intervals, U -statistics, Bootstrap, robust estimation and
statistical study of extreme values.
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1.1 Introduction

1.1.1 On describing Markov chains via Renewal processes

Renewal theory plays a key role in the analysis of the asymptotic structure
of many kinds of stochastic processes, and especially in the development of
asymptotic properties of general irreducible Markov chains. The underlying
ground consists in the fact that limit theorems proved for sums of independent
random vectors may be easily extended to regenerative random processes,
that is to say random processes that may be decomposed at random times,
called regeneration times, into a sequence of mutually independent blocks of
observations, namely regeneration cycles (see [82]). The method based on this
principle is traditionally called the regenerative method. Harris chains that
possess an atom, i.e. a Harris set on which the transition probability kernel is
constant, are special cases of regenerative processes and so directly fall into the
range of application of the regenerative method (Markov chains with discrete
state space as well as many markovian models widely used in operational
research for modeling storage or queuing systems are remarkable examples
of atomic chains). The theory developed in [62] (and in parallel the closely
related concepts introduced in [6]) showed that general Markov chains could
all be considered as regenerative in a broader sense (i.e. in the sense of the
existence of a theoretical regenerative extension for the chain, see § 2.3), as
soon as the Harris recurrence property is satisfied. Hence this theory made
the regenerative method applicable to the whole class of Harris Markov chains
and allowed to carry over many limit theorems to Harris chains such as LLN,
CLT, LIL or Edgeworth expansions.

In many cases, parameters of interest for a Harris Markov chain may be
thus expressed in terms of regeneration cycles. While, for atomic Markov
chains, statistical inference procedures may be then based on a random num-
ber of observed regeneration data blocks, in the general Harris recurrent case
the regeneration times are theoretical and their occurrence cannot be deter-
mined by examination of the data only. Although the Nummelin splitting
technique for constructing regeneration times has been introduced as a theo-
retical tool for proving probabilistic results such as limit theorems or proba-
bility and moment inequalities in the markovian framework, this article aims
to show that it is nevertheless possible to make a practical use of the latter
for extending regeneration-based statistical tools. Our proposal consists in an
empirical method for building approximatively a realization drawn from a
Nummelin extension of the chain with a regeneration set and then recover-
ing ”approximate regeneration data blocks”. As will be shown further, though
the implementation of the latter method requires some prior knowledge about
the behaviour of the chain and crucially relies on the computation of a con-
sistent estimate of its transition kernel, this methodology allows for numerous
statistical applications.

We finally point out that, alternatively to regeneration-based statistical
methods, inference techniques based on data (moving) blocks of fixed length



1 Regeneration-based statistics for Harris recurrent Markov chains 3

may also be used in our markovian framework. But as will be shown through-
out the article, such blocking techniques, introduced for dealing with general
time series (in the weakly dependent setting) are less powerful, when applied
to Harris Markov chains, than the methods we promote here, which are specif-
ically tailored for (pseudo) regenerative processes.

1.1.2 Outline

The outline of the paper is as follows. In section 2, notations are set out and
key concepts of the Markov chain theory as well as some basic notions about
the regenerative method and the Nummelin splitting technique are recalled.
Section 3 presents and discusses how to practically construct (approximate)
regeneration data blocks, on which statistical procedures we investigate fur-
ther are based. Sections 4 and 5 mainly survey results established at length
in [8], [9], [10], [11]. More precisely, the problem of estima-ting additive func-
tionals of the stationary distribution in the Harris positive recurrent case is
considered in section 4. Estimators based on the (pseudo) regenerative blocks,
as well as estimates of their asymptotic variance are exhibited, and limit the-
orems describing the asymptotic behaviour of their bias and their sampling
distribution are also displayed. Section 5 is devoted to the study of a specific re-
sampling procedure, which crucially relies on the (approximate) regeneration
data blocks. Results proving the asymptotic validity of this particular boot-
strap procedure (and its optimality regarding to second order properties in
the atomic case) are stated. Section 6 shows how to extend some of the results
of sections 4 and 5 to V and U -statistics. A specific notion of robustness for
statistics based on the (approximate) regenerative blocks is introduced and in-
vestigated in section 7. And asymptotic properties of some regeneration-based
statistics related to the extremal behaviour of Markov chains are studied in
section 8 in the regenerative case only. Finally, some concluding remarks are
collected in section 9 and further lines of research are sketched.

1.2 Theoretical background

1.2.1 Notation and definitions

We now set out the notations and recall a few definitions concerning the
communication structure and the stochastic stability of Markov chains (for
further detail, refer to [72] or [60]). Let X = (Xn)n∈N be an aperiodic ir-
reducible Markov chain on a countably generated state space (E, E), with
transition probability Π, and initial probability distribution ν. For any B ∈ E
and any n ∈ N, we thus have

X0 ∼ ν and P(Xn+1 ∈ B | X0, ..., Xn) = Π(Xn, B) a.s. .
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In what follows, Pν (respectively Px for x in E) will denote the probability
measure on the underlying probability space such that X0 ∼ ν (resp. X0 = x),
Eν (.) the Pν-expectation (resp. Ex (.) the Px-expectation), I{A} will denote
the indicator function of the event A and ⇒ the convergence in distribution.

A measurable set B is Harris recurrent for the chain if for any x ∈ B,
Px(

∑∞
n=1 I{Xn ∈ B} = ∞) = 1. The chain is said Harris recurrent if it

is ψ-irreducible and every measurable set B such that ψ(B) > 0 is Harris
recurrent. When the chain is Harris recurrent, we have the property that
Px(

∑∞
n=1 I{Xn ∈ B} = ∞) = 1 for any x ∈ E and any B ∈ E such that

ψ(B) > 0.
A probability measure µ on E is said invariant for the chain when µΠ = µ,

where µΠ(dy) =
∫

x∈E
µ(dx)Π (x, dy). An irreducible chain is said positive

recurrent when it admits an invariant probability (it is then unique).
Now we recall some basics concerning the regenerative method and its

application to the analysis of the behaviour of general Harris chains via the
Nummelin splitting technique (refer to [63] for further detail).

1.2.2 Markov chains with an atom

Assume that the chain is ψ-irreducible and possesses an accessible atom, that
is to say a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all
x, y in A. Denote by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A,
by τA(j) = inf {n > τA(j − 1), Xn ∈ A} for j ≥ 2 the successive return times
to A and by EA (.) the expectation conditioned on X0 ∈ A. Assume further
that the chain is Harris recurrent, the probability of returning infinitely often
to the atom A is thus equal to one, no matter what the starting point. Then,
it follows from the strong Markov property that, for any initial distribution
ν, the sample paths of the chain may be divided into i.i.d. blocks of random
length corresponding to consecutive visits to A:

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...

taking their values in the torus T = ∪∞n=1E
n. The sequence (τA(j))j>1 defines

successive times at which the chain forgets its past, called regeneration times.
We point out that the class of atomic Markov chains contains not only chains
with a countable state space (for the latter, any recurrent state is an accessible
atom), but also many specific Markov models arising from the field of oper-
ational research (see [2] for regenerative models involved in queuing theory,
as well as the examples given in § 4.3). When an accessible atom exists, the
stochastic stability properties of the chain amount to properties concerning
the speed of return time to the atom only. For instance, in this framework,
the following result, known as Kac’s theorem, holds (cf Theorem 10.2.2 in
[60]).

Theorem 1. The chain X is positive recurrent iff EA(τA) < ∞. The (unique)
invariant probability distribution µ is then the Pitman’s occupation measure
given by



1 Regeneration-based statistics for Harris recurrent Markov chains 5

µ(B) = EA(
τA∑

i=1

I{Xi ∈ B})/EA(τA), for all B ∈ E .

For atomic chains, limit theorems can be derived from the application of
the corresponding results to the i.i.d. blocks (Bn)n>1. One may refer for ex-
ample to [60] for the LLN, CLT, LIL, [16] for the Berry-Esseen theorem, [56],
[57], [58] and [8] for other refinements of the CLT. The same technique can
also be applied to establish moment and probability inequalities, which are
not asymptotic results (see [26]). As mentioned above, these results are estab-
lished from hypotheses related to the distribution of the Bn’s. The following
assumptions shall be involved throughout the article. Let κ > 0, f : E → R
be a measurable function and ν be a probability distribution on (E, E).

Regularity conditions:

H0(κ) : EA(τκ
A) < ∞,

H0(κ, ν) : Eν(τκ
A) < ∞.

Block-moment conditions:

H1(κ, f) : EA((
τA∑

i=1

|f(Xi)|)κ) < ∞,

H1(κ, ν, f) : Eν((
τA∑

i=1

|f(Xi)|)κ) < ∞.

Remark 1. We point out that conditions H0(κ) and H1(κ, f) do not depend
on the accessible atom chosen : if they hold for a given accessible atom A, they
are also fulfilled for any other accessible atom (see Chapter 11 in [60]). Be-
sides, the relationship between the ”block moment” conditions and the rate of
decay of mixing coefficients has been investigated in [17]: for instance, H0(κ)
(as well as H1(κ, f) when f is bounded) is typically fulfilled as soon as the
strong mixing coefficients sequence decreases at an arithmetic rate n−ρ, for
some ρ > κ− 1.

1.2.3 General Harris recurrent chains

The Nummelin splitting technique

We now recall the splitting technique introduced in [62] for extending the
probabilistic structure of the chain in order to construct an artificial regener-
ation set in the general Harris recurrent case. It relies on the crucial notion of
small set. Recall that, for a Markov chain valued in a state space (E, E) with
transition probability Π, a set S ∈ E is said to be small if there exist m ∈ N∗,
δ > 0 and a probability measure Γ supported by S such that, for all x ∈ S,
B ∈ E ,
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Πm(x,B) ≥ δΓ (B), (1.1)

denoting by Πm the m-th iterate of Π. When this holds, we say that the
chain satisfies the minorization condition M(m,S, δ, Γ ). We emphasize that
accessible small sets always exist for ψ-irreducible chains: any set B ∈ E such
that ψ(B) > 0 actually contains such a set (cf [48]). Now let us precise how
to construct the atomic chain onto which the initial chain X is embedded,
from a set on which an iterate Πm of the transition probability is uniformly
bounded below. Suppose that X satisfies M = M(m,S, δ, Γ ) for S ∈ E such
that ψ(S) > 0. Even if it entails replacing the chain (Xn)n∈N by the chain(
(Xnm, ..., Xn(m+1)−1

)
)n∈N, we suppose m = 1. The sample space is expanded

so as to define a sequence (Yn)n∈N of independent Bernoulli r.v.’s with pa-
rameter δ by defining the joint distribution Pν,M whose construction relies
on the following randomization of the transition probability Π each time the
chain hits S (note that it happens a.s. since the chain is Harris recurrent and
ψ(S) > 0). If Xn ∈ S and

• if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is dis-
tributed according to Γ ,

• if Yn = 0, (which happens with probability 1 − δ), then Xn+1 is drawn
from (1− δ)−1(Π(Xn+1, .)− δΓ (.)).

Set Berδ(β) = δβ+(1−δ)(1−β) for β ∈ {0, 1}. We now have constructed a
bivariate chain XM = ((Xn, Yn))n∈N , called the split chain, taking its values
in E × {0, 1} with transition kernel ΠM defined by

• for any x /∈ S, B ∈ E , β and β′ in {0, 1} ,

ΠM ((x, β) , B × {β′}) = Berδ(β′)×Π (x, B) ,

• for any x ∈ S, B ∈ E , β′ in {0, 1} ,

ΠM ((x, 1) , B × {β′}) = Berδ(β′)× Γ (B),

ΠM ((x, 0) , A× {β′}) = Berδ(β′)× (1− δ)−1(Π (x,B)− δΓ (B)).

Basic assumptions

The whole point of the construction consists in the fact that S×{1} is an atom
for the split chain XM, which inherits all the communication and stochastic
stability properties from X (irreducibility, Harris recurrence,...), in partic-
ular (for the case m = 1 here) the blocks constructed for the split chain
are independent. Hence the splitting method enables to extend the regener-
ative method, and so to establish all of the results known for atomic chains,
to general Harris chains. It should be noticed that if the chain X satisfies
M(m,S, δ, Γ ) for m > 1, the resulting blocks are not independent anymore
but 1-dependent, a form of dependence which may be also easily handled. For
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simplicity ’s sake, we suppose in what follows that condition M is fulfilled
with m = 1, we shall also omit the subscript M and abusively denote by
Pν the extensions of the underlying probability we consider. The following
assumptions, involving the speed of return to the small set S shall be used
throughout the article. Let κ > 0, f : E → R be a measurable function and ν
be a probability measure on (E, E).

Regularity conditions:

H′0(κ) : sup
x∈S

Ex(τκ
S ) < ∞,

H′0(κ, ν) : Eν(τκ
S ) < ∞.

Block-moment conditions:

H′1(κ, f) : sup
x∈S

Ex((
τS∑

i=1

|f(Xi)|)κ) < ∞,

H′1(κ, f, ν) : Eν((
τS∑

i=1

|f(Xi)|)κ) < ∞.

Remark 2. It is noteworthy that assumptions H′0(κ) and H′1(κ, f) do not
depend on the choice of the small set S (if they are checked for some accessible
small set S, they are fulfilled for all accessible small sets cf § 11.1 in [60]).
Note also that in the case when H′0(κ) (resp. H′0(κ, ν)) is satisfied, H′1(κ, f)
(resp.,H′1(κ, f, ν)) is fulfilled for any bounded f . Moreover, recall that positive
recurrence, conditionsH′1(κ) andH′1(κ, f) may be practically checked by using
test functions methods (cf [49], [83]). In particular, it is well known that such
block moment assumptions may be replaced by drift criteria of Lyapounov’s
type (refer to Chapter 11 in [60] for further details on such conditions and
many illustrating examples, see also [29]).

We recall finally that such assumptions on the initial chain classically imply
the desired conditions for the split chain: as soon as X fulfills H′0(κ) (resp.,
H′0(κ, ν), H′1(κ, f), H′1(κ, f, ν)), XM satisfies H0(κ) (resp., H0(κ, ν), H1(κ,
f), H1(κ, f, ν)).

The distribution of (Y1, ..., Yn) conditioned on (X1, ..., Xn+1).

As will be shown in the next section, the statistical methodology for Har-
ris chains we propose is based on approximating the conditional distribu-
tion of the binary sequence (Y1, ..., Yn) given X(n+1) = (X1, ..., Xn+1). We
thus precise the latter. Let us assume further that the family of the condi-
tional distributions {Π(x, dy)}x∈E and the initial distribution ν are domi-
nated by a σ-finite measure λ of reference, so that ν(dy) = f(y)λ(dy) and
Π(x, dy) = p(x, y)λ(dy), for all x ∈ E. Notice that the minorization condition
entails that Γ is absolutely continuous with respect to λ too, and that
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p(x, y) ≥ δγ(y), λ(dy) a.s. (1.2)

for any x ∈ S, with Γ (dy) = γ(y)dy. The distribution of Y (n) = (Y1, ...,
Yn) conditionally to X(n+1) = (x1, ..., xn+1) is then the tensor product of
Bernoulli distributions given by: for all β(n) = (β1, ..., βn) ∈ {0, 1}n

, x(n+1) =
(x1, ..., xn+1) ∈ En+1,

Pν

(
Y (n) = β(n) | X(n+1) = x(n+1)

)
=

n∏

i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1),

with, for 1 6 i 6 n,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δ, if xi /∈ S,

Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) =
δγ(xi+1)

p(xi, xi+1)
, if xi ∈ S.

Roughly speaking, conditioned on X(n+1), from i = 1 to n, Yi is drawn
from the Bernoulli distribution with parameter δ, unless X has hit the small
set S at time i: in this case Yi is drawn from the Bernoulli distribution with pa-
rameter δγ(Xi+1)/p(Xi, Xi+1). We denote by L(n)(p, S, δ, γ, x(n+1)) this prob-
ability distribution.

1.3 Dividing the sample path into (approximate)
regeneration cycles

In the preceding section, we recalled the Nummelin approach for the theoret-
ical construction of regeneration times in the Harris framework. Here we now
consider the problem of approximating these random times from data sets
in practice and propose a basic preprocessing technique, on which estimation
methods we shall discuss further are based.

1.3.1 Regenerative case

Let us suppose we observed a trajectory X1, ..., Xn of length n drawn from
the chain X. In the regenerative case, when an atom A for the chain is a priori
known, regeneration blocks are naturally obtained by simply examining the
data, as follows.

Algorithm 1 (Regeneration blocks construction)

1. Count the number of visits ln =
∑n

i=1 I{Xi ∈ A} to A up to time n.
2. Divide the observed trajectory X(n) = (X1, ...., Xn) into ln + 1 blocks

corresponding to the pieces of the sample path between consecutive visits
to the atom A,
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B0 = (X1, ..., XτA(1)), B1 = (XτA(1)+1, ..., XτA(2)), ...,

Bln−1 = (XτA(ln−1)+1, ..., XτA(ln)), B(n)
ln

= (XτA(ln)+1, ..., Xn),

with the convention B(n)
ln

= ∅ when τA(ln) = n.

3. Drop the first block B0, as well as the last one B(n)
ln

, when non-regenerative
(i.e. when τA(ln) < n).

The regeneration blocks construction is illustrated by Fig. 1 in the case of
a random walk on the half line R+ with {0} as an atom.

Figure 1 : Dividing the trajectory of a random walk on the half line into regeneration
data blocks corresponding to successive visits to A = 0

1.3.2 General Harris case

The principle

Suppose now that observations X1, ..., Xn+1 are drawn from a Harris chain
X satisfying the assumptions of § 2.3.3 (refer to the latter paragraph for
the notations). If we were able to generate binary data Y1, ..., Yn, so that
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XM (n) = ((X1, Y1), ..., (Xn, Yn)) be a realization of the split chain XM de-
scribed in § 2.3, then we could apply the regeneration blocks construction
procedure to the sample path XM (n). Unfortunately, knowledge of the tran-
sition density p(x, y) for (x, y) ∈ S2 is required to draw practically the Yi’s
this way. We propose a method relying on a preliminary estimation of the
”nuisance parameter” p(x, y). More precisely, it consists in approximating
the splitting construction by computing an estimator pn(x, y) of p(x, y) using
data X1, ..., Xn+1, and to generate a random vector (Ŷ1, ..., Ŷn) conditionally
to X(n+1) = (X1, ..., Xn+1), from distribution L(n)(pn, S, δ, γ,X(n+1)), which
approximates in some sense the conditional distribution L(n)(p, S, δ, γ, X(n+1))
of (Y1, ..., Yn) for given X(n+1). Our method, which we call approximate regen-
eration blocks construction (ARB construction in abbreviated form) amounts
then to apply the regeneration blocks construction procedure to the data
((X1, Ŷ1), ..., (Xn, Ŷn)) as if they were drawn from the atomic chain XM. In
spite of the necessary consistent transition density estimation step, we shall
show in the sequel that many statistical procedures, that would be consis-
tent in the ideal case when they would be based on the regeneration blocks,
remain asymptotically valid when implemented from the approximate data
blocks. For given parameters (δ, S, γ) (see § 3.2.2 for a data driven choice
of these parameters), the approximate regeneration blocks are constructed as
follows.

Algorithm 2 (Approximate regeneration blocks construction)

1. From the data X(n+1) = (X1, ..., Xn+1), compute an estimate pn(x, y)
of the transition density such that pn(x, y) ≥ δγ(y), λ(dy) a.s., and
pn(Xi, Xi+1) > 0, 1 6 i 6 n.

2. Conditioned on X(n+1), draw a binary vector (Ŷ1, ..., Ŷn) from the dis-
tribution estimate L(n)(pn, S, δ, γ, X(n+1)). It is sufficient in practice to
draw the Ŷi’s at time points i when the chain visits the set S (i.e. when
Xi ∈ S), since at these times and at these times only the split chain may
regenerate. At such a time point i, draw Ŷi according to the Bernoulli
distribution with parameter δγ(Xi+1)/pn(Xi, Xi+1)).

3. Count the number of visits l̂n =
∑n

i=1 I{Xi ∈ S, Ŷi = 1) to the set
AM = S × {1} up to time n and divide the trajectory X(n+1) into l̂n + 1
approximate regeneration blocks corresponding to the successive visits of
(X, Ŷ ) to AM,

B̂0 = (X1, ..., XbτAM (1)), B̂1 = (XbτAM (1)+1, ..., XbτAM (2)), ...,

B̂bln−1 = (XbτAM (bln−1)+1, ..., XbτAM (bln)), B̂
(n)
ln

= (XbτAM (bln)+1, ..., Xn+1),

where τ̂AM(1) = inf{n > 1, Xn ∈ S, Ŷn = 1} and τ̂AM(j + 1) = inf{n >

τ̂AM(j), Xn ∈ S, Ŷn = 1} for j > 1.

4. Drop the first block B̂0 and the last one B̂(n)
ln

when τ̂AM(l̂n) < n.
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Figure 2: ARB construction for an AR(1) simulated time-series

Such a division of the sample path is illustrated by Fig. 2 : from a practical
viewpoint the trajectory may only be cut when hitting the small set. At such a
point, drawing a Bernoulli r.v. with the estimated parameter indicates whether
one should cut here the time series trajectory or not.

Practical choice of the minorization condition parameters

Because the construction above is highly dependent on the minorization con-
dition parameters chosen, we now discuss how to select the latter with a
data-driven technique so as to construct enough blocks for computing mean-
ingful statistics. As a matter of fact, the rates of convergence of the statistics
we shall study in the sequel increase as the mean number of regenerative (or
pseudo-regenerative) blocks, which depends on the size of the small set chosen
(or more exactly, on how often the chain visits the latter in a trajectory of
finite length) and how sharp is the lower bound in the minorization condition:
the larger the size of the small set is, the smaller the uniform lower bound for
the transition density. This leads us to the following trade-off. Roughly speak-
ing, for a given realization of the trajectory, as one increases the size of the
small set S used for the data blocks construction, one naturally increases the
number of points of the trajectory that are candidates for determining a block
(i.e. a cut in the trajectory), but one also decreases the probability of cut-
ting the trajectory (since the uniform lower bound for {p(x, y)}(x,y)∈S2 then
decreases). This gives an insight into the fact that better numerical results
for statistical procedures based on the ARB construction may be obtained
in practice for some specific choices of the small set, likely for choices corre-
sponding to a maximum expected number of data blocks given the trajectory,
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that is

Nn(S) = Eν(
n∑

i=1

I{Xi ∈ S, Yi = 1} |X(n+1)).

Hence, when no prior information about the structure of the chain is avail-
able, here is a practical data-driven method for selecting the minorization
condition parameters in the case when the chain takes real values. Con-
sider a collection S of borelian sets S (typically compact intervals) and
denote by US(dy) = γS(y).λ(dy) the uniform distribution on S, where
γS(y) = I{y ∈ S}/λ(S) and λ is the Lebesgue measure on R. Now, for
any S ∈ S, set δ(S) = λ(S). inf(x,y)∈S2 p(x, y). We have for any x, y in S,
p(x, y) ≥ δ(S)γS(y). In the case when δ(S) > 0, the ideal criterion to opti-
mize may be then expressed as

Nn(S) =
δ(S)
λ(S)

n∑

i=1

I{(Xi, Xi+1) ∈ S2}
p(Xi, Xi+1)

. (1.3)

However, as the transition kernel p(x, y) and its minimum over S2 are un-
known, a practical empirical criterion is obtained by replacing p(x, y) by
an estimate pn(x, y) and δ(S) by a lower bound δn(S) for λ(S).pn(x, y)
over S2 in expression (1.3). Once pn(x, y) is computed, calculate δn(S) =
λ(S). inf(x,y)∈S2 pn(x, y) and maximize thus the empirical criterion over S ∈ S

N̂n(S) =
δn(S)
λ(S)

n∑

i=1

I{(Xi, Xi+1) ∈ S2}
pn(Xi, Xi+1)

. (1.4)

More specifically, one may easily check at hand on many examples of real
valued chains (see § 4.3 for instance), that any compact interval Vx0(ε) =
[x0 − ε, x0 + ε] for some well chosen x0 ∈ R and ε > 0 small enough, is a
small set, choosing γ as the density of the uniform distribution on Vx0(ε). For
practical purpose, one may fix x0 and perform the optimization over ε > 0
only (see [10]) but both x0 and ε may be considered as tuning parameters.
A possible numerically feasible selection rule could rely then on searching for
(x0, ε) on a given pre-selected grid G = {(x0(k), ε(l)), 1 6 k 6 K, 1 6 l 6 L}
such that inf(x,y)∈Vx0 (ε)2 pn(x, y) > 0 for any (x0, ε) ∈ G.

Algorithm 3 (ARB construction with empirical choice of the small set)

1. Compute an estimator pn(x, y) of p(x, y).
2. For any (x0, ε) ∈ G, compute the estimated expected number of pseudo-

regenerations:

N̂n(x0, ε) =
δn(x0, ε)

2ε

n∑

i=1

I{(Xi, Xi+1) ∈ Vx0(ε)
2}

pn(Xi, Xi+1)
,

with δn(x0, ε) = 2ε. inf(x,y)∈Vx0 (ε)2 pn(x, y).
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3. Pick (x∗0, ε
∗) in G maximizing N̂n(x0, ε) over G, corresponding to the set

S∗ = [x∗0 − ε∗, x∗0 + ε∗] and the minorization constant δ∗n = δn(x∗0, ε
∗).

4. Apply Algorithm 2 for ARB construction using S∗, δ∗n and pn.

Remark 3. Numerous consistent estimators of the transition density of Harris
chains have been proposed in the literature. Refer to [76], [77], [78], [74], [15],
[31], [67], [4] or [25] for instance in positive recurrent cases, [50] in specific null
recurrent cases.

This method is illustrated by Fig. 3 in the case of an AR(1) model: Xi+1 =
αXi + εi+1, i ∈ N, with εi

i.i.d.∼ N (0, 1), α = 0.95 and X0 = 0, for a trajectory
of length n = 200. Taking x0 = 0 and letting ε grow, the expected number
regeneration blocks is maximum for ε∗ close to 0.9. The true minimum value of
p(x, y) over the corresponding square is actually δ = 0.118. The first graphic
in this panel shows the Nadaraya-Watson estimator

pn(x, y) =
∑n

i=1 K(h−1(x−Xi))K(h−1(y −Xi+1))∑n
i=1 K(h−1(x−Xi))

,

computed from the gaussian kernel K(x) = (2π)−1 exp(−x2/2) with an opti-
mal bandwidth h of order n−1/5. The second one plots N̂n(ε) as a function of
ε. The next one indicates the set S∗ corresponding to our empirical selection
rule, while the last one displays the ”optimal” ARB construction.

Note finally that other approaches may be considered for determining prac-
tically small sets and establishing accurate minorization conditions, which
conditions do not necessarily involve uniform distributions besides. Refer for
instance to [73] for Markov diffusion processes.

A two-split version of the ARB construction

When carrying out the theoretical study of statistical methods based on the
ARB construction, one must deal with difficult problems arising from the
dependence structure in the set of the resulting data blocks, due to the pre-
liminary estimation step. Such difficulties are somehow similar as the ones
that one traditionally faces in a semiparametric framework, even in the i.i.d.
setting. The first step of semiparametric methodologies usually consists in a
preliminary estimation of some infinite dimensional nuisance parameter (typ-
ically a density function or a nonparametric curve), on which the remaining
(parametric) steps of the procedure are based. For handling theoretical diffi-
culties related to this dependence problem, a well known method, called the
splitting trick, amounts to split the data set into two parts, the first subset
being used for estimating the nuisance parameter, while the parameter of
interest is then estimated from the other subset (using the preliminary esti-
mate). An analogous principle may be implemented in our framework using an
additional split of the data in the ”middle of the trajectory”, for ensuring that
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Figure 3 : Illustration of Algorithm 3 : ARB construction with empirical choice of
the small set.

a regeneration at least occurs in between with an overwhelming probability
(so as to get two independent data subsets, see step 2 in the algorithm below).
For this reason, we consider the following variant of the ARB construction.
Let 1 < m < n, 1 6 p < n−m.

Algorithm 4 (two-split ARB construction)

1. From the data X(n+1) = (X1, ..., Xn+1), keep only the first m observations
X(m) for computing an estimate pm(x, y) of p(x, y) such that pm(x, y) ≥
δγ(y), λ(dy) a.s. and pm(Xi, Xi+1) > 0, 1 6 i 6 n− 1.

2. Drop the observations between time m + 1 and time m∗ = m + p (under
standard assumptions, the split chain regenerates once at least between
these times with large probability).

3. From remaining observations X(m∗,n) = (Xm∗+1, ..., Xn) and estimate
pm, apply steps 2-4 of Algorithm 2 (respectively of Algorithm 3).

This procedure is similar to the 2-split method proposed in [79], except
that here the number of deleted observations is arbitrary and easier to in-
terpret in term of regeneration. Of course, the more often the split chain
regenerates, the smaller p may be chosen. And the main problem consists in
picking m = mn so that mn →∞ as n →∞ for the estimate of the transition
kernel to be accurate enough, while keeping enough observation n−m∗ for the
block construction step: one typically chooses m = o(n) as n → ∞. Further
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assumptions are required for investigating precisely how to select m. In [11],
a choice based on the rate of convergence αm of the estimator pm(x, y) (for
the MSE when error is measured by the sup-norm over S × S, see assump-
tion H2 in § 4.2) is proposed: when considering smooth markovian models for
instance, estimators with rate αm = m−1 log(m) may be exhibited and one
shows that m = n2/3 is then an optimal choice (up to a log(n)). However, one
may argue, as in the semiparametric case, that this methodology is motivated
by our limitations in the analysis of asymptotic properties of the estimators
only, whereas from a practical viewpoint it may deteriorate the finite sample
performance of the initial algorithm. To our own experience, it is actually
better to construct the estimate p(x, y) from the whole trajectory and the
interest of Algorithm 4 is mainly theoretical.

1.4 Mean and variance estimation

In this section, we suppose that the chain X is positive recurrent with un-
known stationary probability µ and consider the problem of estimating an
additive functional of type µ(f) =

∫
f(x)µ(dx) = Eµ(f(X1)), where f is a

µ-integrable real valued function defined on the state space (E, E). Estima-
tion of additive functionals of type Eµ(F (X1, ..., Xk)), for fixed k > 1, may
be investigated in a similar fashion. We set f(x) = f(x)− µ(f).

1.4.1 Regenerative case

Here we assume further that X admits an a priori known accessible atom
A. As in the i.i.d. setting, a natural estimator of µ(f) is the sample mean
statistic,

µ′n(f) = n−1
n∑

i=1

f(Xi). (1.5)

When the chain is stationary (i.e. when ν = µ), the estimator µ′n(f) has
zero-bias. However, its bias is significant in all other cases, mainly because of
the presence of the first and last (non-regenerative) data blocks B0 and B(n)

ln
(see Proposition 4.1 below). Besides, by virtue of Theorem 2.1, µ(f) may be
expressed as the mean of the f(Xi)’s over a regeneration cycle (renormalized
by the mean length of a regeneration cycle)

µ(f) = EA(τA)−1EA(
τA∑

i=1

f(Xi)).

This suggests to introduce the following estimators of the mean µ(f). Define
the sample mean based on the observations (eventually) collected after the
first regeneration time only by µ̃n(f) = (n − τA)−1

∑n
i=1+τA

f(Xi) with the
convention µ̃n(f) = 0, when τA > n, as well as the sample mean based on the



16 Patrice Bertail and Stéphan Clémençon

observations collected between the first and last regeneration times before n

by µn(f) = (τA(ln) − τA)−1
∑τA(ln)

i=1+τA
f(Xi) with ln =

∑n
i=1 I{Xi ∈ A} and

the convention µn(f) = 0, when ln 6 1 (observe that, by Markov’s inequality,
Pν(ln 6 1) = O(n−1) as n →∞, as soon as H0(1, ν) and H0(2) are fulfilled).

Let us introduce some additional notation for the block sums (resp. the
block lengths), that shall be used here and throughout. For j > 1, n > 1, set

l(B0) = τA, l(Bj) = τA(j + 1)− τA(j), l(B(n)
ln

) = n− τA(ln)

for the length of the blocks and

f(B0) =
τA∑

i=1

f(Xi), f(Bj) =
τA(j+1)∑

i=1+τA(j)

f(Xi), f(B(n)
ln

) =
n∑

i=1+τA(ln)

f(Xi)

for the value of the functional on the blocks. With these notations, the esti-
mators above may be rewritten as

µ′n(f) =
f(B0) +

∑ln−1
j=1 f(Bj) + f(B(n)

ln
)

l(B0) +
∑ln−1

j=1 l(Bj) + l(B(n)
ln

)
,

µ̃n(f) =

∑ln−1
j=1 f(Bj) + f(B(n)

ln
)

∑ln−1
j=1 l(Bj) + l(B(n)

ln
)

, µn(f) =

∑ln−1
j=1 f(Bj)∑ln−1
j=1 l(Bj)

.

Let µn(f) designs any of the three estimators µ′n(f), µ̃n(f) or µn(f). If X
fulfills conditions H0(2), H0(2, ν), H1(f, 2, A), H1(f, 2, ν) then the following
CLT holds under Pν (cf Theorem 17.2.2 in [60])

n1/2σ−1(f)(µn(f)− µ(f)) ⇒ N (0, 1) , as n →∞,

with a normalizing constant

σ2(f) = µ (A)EA((
τA∑

i=1

f(Xi)− µ(f)τA)2), (1.6)

From this expression we propose the following estimator of the asymptotic
variance, adopting the usual convention regarding to empty summation,

σ2
n(f) = n−1

ln−1∑

j=1

(f(Bj)− µn(f)l(Bj))2. (1.7)

Notice that the first and last data blocks are not involved in its construction.
We could have proposed estimators involving different estimates of µ(f), but
as will be seen later, it is preferable to consider an estimator based on regener-
ation blocks only. The following quantities shall be involved in the statistical
analysis below. Define
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α = EA(τA), β = EA(τA

τA∑

i=1

f(Xi)) = CovA(τA,

τA∑

i=1

f(Xi)),

ϕν = Eν(
τA∑

i=1

f(Xi)), γ = α−1EA(
τA∑

i=1

(τA − i)f(Xi)).

We also introduce the following technical conditions.
(C1) (Cramer condition)

lim
t→∞

| EA(exp(it
τA∑

i=1

f(Xi))) |< 1.

(C2) (Cramer condition)

lim
t→∞

| EA(exp(it(
τA∑

i=1

f(Xi))2)) |< 1.

(C3) There exists N > 1 such that the N -fold convoluted density g∗N is
bounded, denoting by g the density of the (

∑τA(j+1)
i=1+τA(j) f(Xi) − α−1β)2’s.

(C4) There exists N > 1 such that the N -fold convoluted density G∗N is
bounded, denoting by G the density of the (

∑τA(j+1)
i=1+τA(j) f(Xi))2’s.

These two conditions are automatically satisfied if
∑τA(2)

i=1+τA(1) f(Xi) has
a bounded density.

The result below is a straightforward extension of Theorem 1 in [56](see
also Proposition 3.1 in [8]).

Proposition 1. Suppose that H0(4), H0(2, ν), H1(4, f), H1(2, ν, f) and
Cramer condition (C1) are satisfied by the chain. Then, as n →∞, we have

Eν(µ′n(f)) = µ(f) + (ϕν + γ − β/α)n−1 + O(n−3/2), (1.8)

Eν(µ̃n(f)) = µ(f) + (γ − β/α)n−1 + O(n−3/2), (1.9)

Eν(µn(f)) = µ(f)− (β/α)n−1 + O(n−3/2). (1.10)

If the Cramer condition (C2) is also fulfilled, then

Eν(σ2
n(f)) = σ2(f) + O(n−1), as n →∞, (1.11)

and we have the following CLT under Pν ,

n1/2(σ2
n(f)− σ2(f)) ⇒ N (0, ξ2(f)), as n →∞, (1.12)

with ξ2(f) = µ(A)V arA((
∑τA

i=1 f(Xi))2 − 2α−1β
∑τA

i=1 f(Xi)).

Proof. The proof of (1.8)-(1.11) is given in [8] and the linearization of σ2
n(f)

below follows from their Lemma 6.3



18 Patrice Bertail and Stéphan Clémençon

σ2
n(f) = n−1

ln−1∑

j=1

g(Bj) + rn, (1.13)

with g(Bj) = f(Bj)2− 2α−1βf(Bj), for j > 1, and for some η1 > 0, Pν(nrn >
η1 log(n)) = O(n−1), as n →∞. We thus have, as n →∞,

n1/2(σ2
n(f)− σ2(f)) = (ln/n)1/2l−1/2

n

ln−1∑

j=1

(g(Bj)− E(g(Bj)) + oPν (1),

and (13) is established with the same argument as for Theorem 17.3.6 in [60],
as soon as V ar(g(Bj)) < ∞, that is ensured by assumption H1(4, f).

Remark 4. We emphasize that in a non i.i.d. setting, it is generally diffi-
cult to construct an accurate (positive) estimator of the asymptotic vari-
ance. When no structural assumption, except stationarity and square in-
tegrability, is made on the underlying process X, a possible method, cur-
rently used in practice, is based on so-called blocking techniques. Indeed un-
der some appropriate mixing conditions (which ensure that the following
series converge), it can be shown that the variance of n−1/2µ′n(f) may be
written V ar(n−1/2µ′n(f)) = Γ (0) + 2

∑n
t=1(1 − t/n)Γ (t) and converges to

σ2(f) =
∑∞

t=∞ Γ (t) = 2πg(0), where g(w) = (2π)−1
∑∞

t=−∞ Γ (t) cos(wt) and
(Γ (t))t>0 denote respectively the spectral density and the autocovariance se-
quence of the discrete-time stationary process X. Most of the estimators of
σ2(f) that have been proposed in the literature (such as the Bartlett spectral
density estimator, the moving-block jackknife/subsampling variance estima-
tor, the overlapping or non-overlapping batch means estimator) may be seen
as variants of the basic moving-block bootstrap estimator (see [52], [55])

σ̂2
M,n =

M

Q

Q∑

i=1

(µi,M,L − µn(f))2, (1.14)

where µi,M,L = M−1
∑L(i−1)+M

t=L(i−1)+1 f(Xt) is the mean of f on the i-th data
block (XL(i−1)+1, . . . , XL(i−1)+M ). Here, the size M of the blocks and the
amount L of ‘lag’ or overlap between each block are deterministic (eventually
depending on n) and Q = [n−M

L ] + 1, denoting by [·] the integer part, is the
number of blocks that may be constructed from the sample X1, ..., Xn. In the
case when L = M , there is no overlap between block i and block i + 1 (as the
original solution considered by [42], [24]), whereas the case L = 1 corresponds
to maximum overlap (see [64], [66] for a survey). Under suitable regularity
conditions (mixing and moments conditions), it can be shown that if M →∞
with M/n → 0 and L/M → a ∈ [0, 1] as n →∞, then we have

E(σ̂2
M,n)− σ2(f) = O(1/M) + O(

√
M/n), (1.15)

V ar(σ̂2
M,n) = 2c

M

n
σ4(f) + o(M/n), (1.16)
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as n → ∞, where c is a constant depending on a, taking its smallest value
(namely c = 2/3) for a = 0. This result shows that the bias of such esti-
mators may be very large. Indeed, by optimizing in M we find the optimal
choice M ∼ n1/3, for which we have E(σ̂2

M,n)−σ2(f) = O(n−1/3). Various ex-
trapolation and jackknife techniques or kernel smoothing methods have been
suggested to get rid of this large bias (refer to [64], [40], [7] and [12]). The
latter somehow amount to make use of Rosenblatt smoothing kernels of or-
der higher than two (taking some negative values) for estimating the spectral
density at 0. However, the main drawback in using these estimators is that
they take negative values for some n, and lead consequently to face problems,
when dealing with studentized statistics. In our specific Markovian framework,
the estimate σ2

n(f) in the atomic case (or latter σ̂2
n(f) in the general case) is

much more natural and allows to avoid these problems. This is particularly
important when the matter is to establish Edgeworth expansions at orders
higher than two in such a non i.i.d. setting. As a matter of fact, the bias of
the variance may completely cancel the accuracy provided by higher order
Edgeworth expansions (but also the one of its Bootstrap approximation) in
the studentized case, given its explicit role in such expansions (see [40]).

From Proposition 4.1, we immediately derive that

tn = n1/2σ−1
n (f)(µn(f)− µ(f)) ⇒ N (0, 1) , as n →∞,

so that asymptotic confidence intervals for µ(f) are immediately available in
the atomic case. This result also shows that using estimators µ̃n(f) or µn(f)
instead of µ′n(f) allows to eliminate the only quantity depending on the initial
distribution ν in the first order term of the bias, which may be interesting for
estimation purpose and is crucial when the matter is to deal with an esti-
mator of which variance or sampling distribution may be approximated by a
resampling procedure in a nonstationary setting (given the impossibility to
approximate the distribution of the ”first block sum”

∑τA

i=1 f(Xi) from one
single realization of X starting from ν). For these estimators, it is actually
possible to implement specific Bootstrap methodologies, for constructing sec-
ond order correct confidence intervals for instance (see [9], [10] and section
5). Regarding to this, it should be noticed that Edgeworth expansions (E.E.
in abbreviated form) may be obtained using the regenerative method by par-
titioning the state space according to all possible values for the number ln
regeneration times before n and for the sizes of the first and last block as
in [57]. [8] proved the validity of an E.E. in the studentized case, of which
form is recalled below. Notice that actually (C3) corresponding to their v)
in Proposition 3.1 in [8] is not needed in the unstudentized case. Let Φ(x)
denote the distribution function of the standard normal distribution and set
φ(x) = dΦ(x)/dx.

Theorem 2. Let b(f) = limn→∞ n(µn(f) − µ(f)) be the asymptotic bias of
µn(f). Under conditions H0(4), H0(2, ν), H1(4, f), H1(2, ν, f), (C1), we
have the following E.E.,



20 Patrice Bertail and Stéphan Clémençon

sup
x∈R

|Pν

(
n1/2σ(f)−1(µn(f)− µ(f)) ≤ x

)
− E(2)

n (x)| = O(n−1), as n →∞,

with

E(2)
n (x) = Φ(x)− n−1/2 k3(f)

6
(x2 − 1)φ(x)− n−1/2b(f)φ(x), (1.17)

k3(f) = α−1(M3,A − 3β

σ(f)
), M3,A =

EA((
∑τA

i=1 f(Xi))3)
σ(f)3

. (1.18)

A similar limit result holds for the studentized statistic under the further hy-
pothesis that (C2), (C3), H0(s) and H1(s, f) are fulfilled with s = 8 + ε for
some ε > 0:

sup
x∈R

|Pν(n1/2σ−1
n (f)(µn(f)− µ(f)) ≤ x)− F (2)

n (x)| = O(n−1 log(n)), (1.19)

as n →∞, with F
(2)
n (x) = Φ(x)+n−1/2 1

6k3(f)(2x2 +1)φ(x)−n−1/2b(f)φ(x).
When µn(f) = µn(f), under (C4) , O(n−1 log(n)) may be replaced by O(n−1).

This theorem may serve for building accurate confidence intervals for µ(f)
(by E.E. inversion as in [1] or [41]). It also paves the way for studying precisely
specific bootstrap methods, as in [10]. It should be noted that the skewness
k3(f) is the sum of two terms: the third moment of the recentered block sums
and a correlation term between the block sums and the block lengths. The co-
efficients involved in the E.E. may be directly estimated from the regenerative
blocks. Once again by straightforward CLT arguments, we have the following
result.

Proposition 2. For s > 1, under H1(f, 2s), H1(f, 2, ν), H0(2s) and H0(2,
ν), Ms,A = EA((

∑τA

i=1 f(Xi))s) is well-defined and we have

µ̂s,n = n−1
ln−1∑

i=1

(f(Bj)− µn(f)l(Bj))s = α−1Ms,A + OPν (n−1/2), as n →∞.

1.4.2 Positive recurrent case

We now turn to the general positive recurrent case (refer to § 2.3 for assump-
tions and notation). It is noteworthy that, though they may be expressed
using the parameters of the minorization condition M, the constants involved
in the CLT are independent from these latter. In particular the mean and the
asymptotic variance may be written as
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µ(f) = EAM(τAM)−1EAM(
τAM∑

i=1

f(Xi)),

σ2(f) = EAM(τAM)−1EAM((
τAM∑

i=1

f(Xi))2),

where τAM = inf{n > 1, (Xn, Yn) ∈ S × {1}} and EAM(.) denotes the
expectation conditionally to (X0, Y0) ∈ AM = S × {1}. However, one cannot
use the estimators of µ(f) and σ2(f) defined in the atomic setting, applied to
the split chain, since the times when the latter regenerates are unobserved. We
thus consider the following estimators based on the approximate regeneration
times (i.e. times i when (Xi, Ŷi) ∈ S × {1}), as constructed in § 3.2,

µ̂n(f) = n̂−1
AM

bln−1∑

j=1

f(B̂j) and σ̂2
n(f) = n̂−1

AM

bln−1∑

j=1

{f(B̂j)− µ̂n(f)l(B̂j)}2,

with, for j > 1,

f(B̂j) =
bτAM (j+1)∑

i=1+bτAM (j)

f(Xi), l(B̂j) = τ̂AM(j + 1)− τ̂AM(j),

n̂
AM = τ̂AM(l̂n)− τ̂AM(1) =

bln−1∑

j=1

l(B̂j).

By convention, µ̂n(f) = 0 and σ̂2
n(f) = 0 (resp. n̂

AM = 0), when l̂n 6 1
(resp., when l̂n = 0). Since the ARB construction involves the use of an
estimate pn(x, y) of the transition kernel p(x, y), we consider conditions on
the rate of convergence of this estimator. For a sequence of nonnegative real
numbers (αn)n∈N converging to 0 as n →∞,

H2 : p(x, y) is estimated by pn(x, y) at the rate αn for the MSE when
error is measured by the L∞ loss over S × S:

Eν( sup
(x,y)∈S×S

|pn(x, y)− p(x, y)|2) = O(αn), as n →∞.

See Remark 3.1 for references concerning the construction and the study of
transition density estimators for positive recurrent chains, estimation rates
are usually established under various smoothness assumptions on the density
of the joint distribution µ(dx)Π(x, dy) and the one of µ(dx). For instance,
under classical Hölder constraints of order s, the typical rate for the risk in
this setup is αn ∼ (ln n/n)s/(s+1) (refer to [25]).

H3 : The ”minorizing” density γ is such that infx∈S γ(x) > 0.
H4 : The transition density p(x, y) and its estimate pn(x, y) are bounded

by a constant R < ∞ over S2.
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Some asymptotic properties of these statistics based on the approximate
regeneration data blocks are stated in the following theorem (their proof is
omitted since it immediately follows from the argument of Theorem 3.2 and
Lemma 5.3 in [10]),

Theorem 3. If assumptions H′0(2, ν), H′0(8), H′1(f, 2, ν), H′1(f, 8), H2, H3

and H4 are satisfied by X, as well as conditions (C1) and (C2) by the split
chain, we have, as n →∞,

Eν(µ̂n(f)) = µ(f)− β/α n−1 + O(n−1α1/2
n ),

Eν(σ̂2
n(f)) = σ2(f) + O(αn ∨ n−1),

and if αn = o(n−1/2),then

n1/2(σ̂2
n(f)− σ2(f)) ⇒ N (0, ξ2(f))

where α, β and ξ2(f) are the quantities related to the split chain defined in
Proposition 4.1 .

Remark 5. The condition αn = o(n−1/2) as n → ∞ may be ensured by
smoothness conditions satisfied by the transition kernel p(x, y): under Hölder
constraints of order s such rates are achieved as soon as s > 1, that is a rather
weak assumption.

We also define the pseudo-regeneration based standardized (resp., studen-
tized) sample mean by

ς̂n = n1/2σ−1(f)(µ̂n(f)− µ(f)),

t̂n = n̂1/2
AM

σ̂n(f)−1(µ̂n(f)− µ(f)).

The following theorem straightforwardly results from Theorem 3.

Theorem 4. Under the assumptions of Theorem 3, we have as n →∞

ς̂n ⇒ N (0, 1) and t̂n ⇒ N (0, 1).

This shows that from pseudo-regeneration blocks one may easily construct
a consistent estimator of the asymptotic variance σ2(f) and asymptotic con-
fidence intervals for µ(f) in the general positive recurrent case (see Section
5 for more accurate confidence intervals based on a regenerative bootstrap
method). In [8], an E.E. is proved for the studentized statistic t̂n. The main
problem consists in handling computational difficulties induced by the depen-
dence structure, that results from the preliminary estimation of the transition
density. For partly solving this problem, one may use Algorithm 4, involv-
ing the 2-split trick. Under smoothness assumptions for the transition kernel
(which are often fulfilled in practice), [11] established the validity of the E.E.
up to O(n−5/6 log(n)), stated in the result below.
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For this we need to introduce the following Cramer condition which is
somehow easier to check than the Cramer condition C1 for the split-chain

(C1′) Assume that, for the chosen small set S,

lim
|t|→∞

sup
x∈S

|Ex(exp(it(
τS∑

i=1

{f(Xi)− µ(f)}))| < 1

Theorem 5. Suppose that (C1′), H′0(κ, ν), H′1(κ, f, ν), H′0(κ), H′1(κ,
f) with κ > 6, H2, H3 and H4 are fulfilled. Let mn and pn be integer se-
quences tending to ∞ as n → ∞, such that n1/γ ≤ pn ≤ mn and mn = o(n)
as n →∞. Then, the following limit result holds for the pseudo-regeneration
based standardized sample mean obtained via Algorithm 4

sup
x∈R

|Pν (ς̂n ≤ x)− E(2)
n (x)| = O(n−1/2α1/2

mn
∨ n−3/2mn), as n →∞,

and if in addition (C4) holds for the split chain and the preceding assumptions
with κ > 8 and are satisfied, we also have

sup
x∈R

|Pν(t̂n ≤ x)− F (2)
n (x)| = O(n−1/2α1/2

mn
∨ n−3/2mn), as n →∞,

where E
(2)
n (x) and F

(2)
n (x) are the expansions defined in Theorem 4.2 related

to the split chain. In particular, if αmn = mn log(mn), by picking mn = n2/3,
these E.E. hold up to O(n−5/6 log(n)).

The conditions are satisfied for a wide range of Markov chains, including
nonstationary cases and chains with polynomial decay of α−mixing coefficients
(cf remark 2.1) that do not fall into the validity framework of the Moving
Block Bootstrap methodology. In particular it is worth noticing that these
conditions are weaker than [39]’s conditions (in a strong mixing setting).

As stated in the following proposition, the coefficients involved in the E.E.’s
above may be estimated from the approximate regeneration blocks.

Proposition 3. Under H′0(2s, ν), H′1(2s, ν, f), H′0(2s ∨ 8), H′1(2s ∨ 8, f)
with s ≥ 2, H2, H3 and H4, the expectation Ms,AM = EAM((

∑τAM
i=1 f(Xi))s)

is well-defined and we have, as n →∞,

µ̂s,n = n−1
ln−1∑

i=1

(f(B̂j)− µ̂n(f)l(B̂j))s = EAM(τAM)−1Ms,AM + OPν (α1/2
mn

).

1.4.3 Some illustrative examples

Here we give some examples with the aim to illustrate the wide range of
applications of the results previously stated.



24 Patrice Bertail and Stéphan Clémençon

Example 1 : countable Markov chains.

Let X be a general irreducible chain with a countable state space E. For such a
chain, any recurrent state a ∈ E is naturally an accessible atom and conditions
involved in the limit results presented in § 4.1 may be easily checked at hand.
Consider for instance Cramer condition (C1), denote by Π the transition
matrix and set A = {a}. We have, for any k ∈ N∗:

∣∣∣EA(eit
PτA

j=1 f(Xj))
∣∣∣ =

∣∣∣∣∣
∞∑

l=1

EA(eit
Pl

j=1 f(Xj)|τA = l)PA(τA = l)

∣∣∣∣∣

6
∣∣∣EA(eit

Pk
j=1 f(Xj)|τA = k)PA(τA = k) + 1− PA(τA = k)

∣∣∣ .

and

∣∣∣EA(eit
Pk

j=1 f(Xj)|τA = k)
∣∣∣ =

∣∣∣∣∣∣
∑

x1 6=a,...,xk−1 6=a

eit
Pk

j=1 f(xj)Π(a, x1)...Π(xk−1, a)

∣∣∣∣∣∣
6

∑

x1 6=a,...,xk−1 6=a

Π(a, x1)...Π(xk−1, a) = PA(τA = k).

We thus have |EA(eitSA(f))| ≤ PA(τA = k)2 + 1 − PA(τA = k). Hence, as
soon as there exists k0 > 1 such that the probability that the chain returns to
state a in k0 steps is strictly positive and strictly less than 1, (C1) is fulfilled.
Notice that the only case for which such condition does not hold corresponds
to the case when the return time to the atom is deterministic (observe that
this includes the discrete i.i.d. case, that corresponds to the case when the
whole state space is a Harris atom).

Example 2 : modulated random walk on R+.

Consider the model

X0 = 0 and Xn+1 = (Xn + Wn)+ for n ∈ N, (1.20)

where x+ = max(x, 0), (Xn) and (Wn) are sequences of r.v.’s such that, for all
n ∈ N, the distribution of Wn conditionally to X0, ..., Xn is given by U(Xn, .)
where U(x,w) is a transition kernel from R+ to R. Then, Xn is a Markov
chain on R+ with transition probability kernel Π(x, dy) given by

Π(x, {0}) = U(x, ]−∞, − x]),
Π(x, ]y, ∞[) = U(x, ]y − x, ∞[),

for all x > 0. Observe that the chain Π is δ0-irreducible when U(x, .) has
infinite left tail for all x > 0 and that {0} is then an accessible atom for X.
The chain is shown to be positive recurrent iff there exists b > 0 and a test
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function V : R+ → [0, ∞] such that V (0) < ∞ and the drift condition below
holds for all x > 0∫

Π(x, dy)V (y)− V (x) 6 −1 + bI{x = 0},

(see in [60]). The times at which X reaches the value 0 are thus regeneration
times, and allow to define regeneration blocks dividing the sample path, as
shown in Fig. 1. Such a modulated random walk (for which, at each step n,
the increasing Wn depends on the actual state Xn = x), provides a model
for various systems, such as the popular content-dependent storage process
studied in [44] (see also [19]) or the work-modulated single server queue in the
context of queuing systems (cf [20]). For such atomic chains with continuous
state space (refer to [60], [33], [34] and [2] for other examples of such chains),
one may easily check conditions used in § 3.1 in many cases. One may show
for instance that (C1) is fulfilled as soon as there exists k > 1 such that
0 < PA(τA = k) < 1 and the distribution of

∑k
i=1 f(Xi) conditioned on

X0 ∈ A and τA = k is absolutely continuous. For the regenerative model
described above, this sufficient condition is fulfilled with k = 2, f(x) = x
and A = {0}, when it is assumed for instance that U(x, dy) is absolutely
continuous for all x > 0 and ∅ 6=suppU(0, dy) ∩ R∗+ 6= R∗+.

Example 3: nonlinear time series.

Consider the heteroskedastic autoregressive model

Xn+1 = m(Xn) + σ(Xn)εn+1, n ∈ N,

where m : R→ R and σ : R→ R∗+ are measurable functions, (εn)n∈N is a
i.i.d. sequence of r.v.’s drawn from g(x)dx such that, for all n ∈ N, εn+1 is
independent from the Xk’s, k 6 n with E(εn+1) = 0 and E(ε2

n+1) = 1. The
transition kernel density of the chain is given by p(x, y) = g((y−m(x))/σ(x)),
(x, y) ∈ R2. Assume further that g, m and σ are continuous functions and
there exists x0 ∈ R such that p(x0, x0) > 0. Then, the transition density is
uniformly bounded from below over some neighborhood Vx0(ε)

2 = [x0−ε, x0+
ε]2 of (x0, x0) in R2 : there exists δ = δ(ε) ∈]0, 1[ such that,

inf
(x,y)∈V 2

x0

p(x, y) > δ(2ε)−1. (1.21)

We thus showed that the chain X satisfies the minorization condition
M(1, Vx0(ε), δ,UVx0 (ε)). Furthermore, block-moment conditions for such time
series model may be checked via the practical conditions developed in [29]
(see their example 3).

1.5 Regenerative block-bootstrap

[5] and [27] proposed a specific bootstrap methodology for atomic Harris pos-
itive recurrent Markov chains, which exploits the renewal properties of the
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latter. The main idea underlying this method consists in resampling a deter-
ministic number of data blocks corresponding to regeneration cycles. However,
because of some inadequate standardization, the regeneration-based bootstrap
method proposed in [27] is not second order correct when applied to the sam-
ple mean problem (its rate is OP(n−1/2) in the stationary case). Prolongating
this work, [9] have shown how to modify suitably this resampling procedure
to make it second order correct up to OP(n−1 log(n)) in the unstudentized
case (i.e. when the variance is known) when the chain is stationary. However
this Bootstrap method remains of limited interest from a practical viewpoint,
given the necessary modifications (standardization and recentering) and the
restrictive stationary framework required to obtain the second order accu-
racy: it fails to be second order correct in the nonstationary case, as a careful
examination of the second order properties of the sample mean statistic of
a positive recurrent chain based on its E.E. shows (cf [57], [8]). A powerful
alternative, namely the Regenerative Block-Bootstrap (RBB), have been thus
proposed and studied in [10], that consists in imitating further the renewal
structure of the chain by resampling regeneration data blocks, until the length
of the reconstructed Bootstrap series is larger than the length n of the origi-
nal data series, so as to approximate the distribution of the (random) number
of regeneration blocks in a series of length n and remove some bias terms
(see section 4). Here we survey the asymptotic validity of the RBB for the
studentized mean by an adequate estimator of the asymptotic variance. This
is the useful version for confidence intervals but also for practical use of the
Bootstrap (cf [43]) and for a broad class of Markov chains (including chains
with strong mixing coefficients decreasing at a polynomial rate), the accuracy
reached by the RBB is proved to be of order OP(n−1) both for the standard-
ized and the studentized sample mean. The rate obtained is thus comparable
to the optimal rate of the Bootstrap distribution in the i.i.d. case, contrary
to the Moving Block Bootstrap (cf [40], [53]). The proof relies on the E.E.
for the studentized sample mean stated in § 4.1 (see Theorems 4.2, 4.6). In
[10] a straightforward extension of the RBB procedure to general Harris chains
based on the ARB construction (see § 3.1) is also proposed (it is called Approx-
imate Regenerative Block-Bootstrap, ARBB in abbreviated form). Although it
is based on the approximate regenerative blocks, it is shown to be still second
order correct when the estimate pn used in the ARB algorithm is consistent.
We also emphasize that the principles underlying the (A)RBB may be applied
to any (eventually continuous time) regenerative process (and not necessarily
markovian) or with a regenerative extension that may be approximated (see
[84]).

1.5.1 The (approximate) regenerative block-bootstrap algorithm.

Once true or approximate regeneration blocks B̂1, ..., B̂bln−1 are obtained
(by implementing Algorithm 1, 2, 3 or 4 ), the (approximate) regenerative
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block-bootstrap algorithm for computing an estimate of the sample distri-
bution of some statistic Tn = T (B̂1, ..., B̂bln−1) with standardization Sn =
S(B̂1, ..., B̂bln−1) is performed in 3 steps as follows.

Algorithm 5 (Approximate) Regenerative Block-Bootstrap

1. Draw sequentially bootstrap data blocks B∗1 , ..., B∗k (with length denoted
by l(B∗j ), j = 1, ..., k) independently from the empirical distribution L̂n =

(l̂n − 1)−1
∑bln−1

j=1 δ bBj
of the initial blocks B̂1, ..., B̂bln−1, until the length

of the bootstrap data series l∗(k) =
∑k

j=1 l(B∗j ) is larger than n. Let
l∗n = inf{k > 1, l∗(k) > n}.

2. From the bootstrap data blocks generated at step 1, reconstruct a pseudo-
trajectory by binding the blocks together, getting the reconstructed
(A)RBB sample path

X∗(n) = (B∗1 , ...,B∗l∗n−1).

Then compute the (A)RBB statistic and its (A)RBB standardization

T ∗n = T (X∗(n)) and S∗n = S(X∗(n)).

3. The (A)RBB distribution is then given by

H(A)RBB(x) = P∗(S∗−1
n (T ∗n − Tn) 6 x),

where P∗ denotes the conditional probability given the original data.

Remark 6. A Monte-Carlo approximation to H(A)RBB(x) may be straightfor-
wardly computed by repeating independently N times this algorithm.

1.5.2 Atomic case: second order accuracy of the RBB

In the case of the sample mean, the bootstrap counterparts of the estimators
µn(f) and σ2

n(f) considered in § 4.1 (using the notation therein) are

µ∗n(f) = n∗−1
A

l∗n−1∑

j=1

f(B∗j ) and σ∗2n (f) = n∗−1
A

l∗n−1∑

j=1

{
f(B∗j )− µ∗n(f)l(B∗j )

}2
,

(1.22)
with n∗A =

∑l∗n−1
j=1 l(B∗j ). Let us consider the RBB distribution estimates of

the unstandardized and studentized sample means

HU
RBB(x) = P∗(n1/2

A σn(f)−1{µ∗n(f)− µn(f)} ≤ x),

HS
RBB(x) = P∗(n∗−1/2

A σ∗−1
n (f){µ∗n(f)− µn(f)} ≤ x).

The following theorem established in [9] shows that the RBB is asymptotically
valid for the sample mean. Moreover it ensures that the RBB attains the
optimal rate of the i.i.d. Bootstrap. The proof of this result crucially relies
on the E.E. given in [57] in the standardized case and its extension to the
studentized case proved in [8].
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Theorem 6. Suppose that (C1) is satisfied. Under H′0(2, ν), H′1(2, f, ν),
H′0(κ) and H1(κ, f) with κ > 6, the RBB distribution estimate for the un-
standardized sample mean is second order accurate in the sense that

∆U
n = sup

x∈R
|HU

RBB(x)−HU
ν (x)| = OPν

(n−1), as n →∞,

with HU
ν (x) = Pν(n1/2

A σ−1
f {µn(f) − µ(f)} ≤ x). And if in addition (C4),

H′0(κ) and H1(κ, f) are checked with κ > 8, the RBB distribution estimate
for the standardized sample mean is also 2nd order correct

∆S
n = sup

x∈R
|HS

RBB(x)−HS
ν (x)| = OPν

(n−1), as n →∞,

with HS
ν (x) = Pν(n1/2

A σ−1
n (f){µn(f)− µ(f)} ≤ x).

1.5.3 Asymptotic validity of the ARBB for general chains

The ARBB counterparts of the statistics µ̂n(f) and σ̂2
n(f) considered in § 4.2

(using the notation therein) may be expressed as

µ∗n(f) = n∗−1
AM

l∗n−1∑

j=1

f(B∗j ) and σ∗2n (f) = n∗−1
AM

l∗n−1∑

j=1

{
f(B∗j )− µ∗n(f)l(B∗j )

}2
,

denoting by n∗
AM

=
∑l∗n−1

j=1 l(B∗j ) the length of the ARBB data series. De-
fine the ARBB versions of the pseudo-regeneration based unstudentized and
studentized sample means (cf § 4.2) by

ς̂∗n = n1/2
AM

µ∗n(f)− µ̂n(f)
σ̂n(f)

and t̂∗n = n∗1/2
AM

µ∗n(f)− µ̂n(f)
σ∗n(f)

.

The unstandardized and studentized version of the ARBB distribution esti-
mates are then given by

HU
ARBB(x) = P∗(ς̂∗n ≤ x | X(n+1)) and HS

ARBB(x) = P∗(t̂∗n ≤ x | X(n+1)).

This is the same construction as in the atomic case, except that one uses the
approximate regeneration blocks instead of the exact regenerative ones (cf
Theorem 3.3 in [10]).

Theorem 7. Under the hypotheses of Theorem 4.2, we have the following
convergence results in distribution under Pν

∆U
n = sup

x∈R
|HU

ARBB(x)−HU
ν (x)| → 0, as n →∞,

∆S
n = sup

x∈R
|HS

ARBB(x)−HS
ν (x)| → 0, as n →∞.
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Second order properties of the ARBB using the 2-split trick

To bypass the technical difficulties related to the dependence problem induced
by the preliminary step estimation, assume now that the pseudo regenerative
blocks are constructed according to Algorithm 4 (possibly including the se-
lection rule for the small set of Algorithm 3 when using only the mn first
observations). It is then easier (at the price of a small loss in the 2nd or-
der term) to get second order results both in the case of standardized and
studentized statistics, as stated below (refer to [10] for the technical proof).

Theorem 8. Under assumptions (C1′), H′0(κ, ν), H′1(κ, f, ν), H′0(f, κ),
H′1(f, κ) with κ > 6, H2, H3 and H4, we have the second order validity
of the ARBB distribution both in the standardized and unstandardized case up
to order

∆U
n = OPν (n−1/2α1/2

mn
∨ n−1/2n−1mn}), as n →∞.

And if in addition, (C4) holds for the split chains and the preceding assump-
tions hold with κ > 8, we have

∆S
n = OPν (n−1/2α1/2

mn
∨ n−1/2n−1mn), as n →∞

In particular if αm = m log(m), by choosing mn = n2/3, the ARBB is second
order correct up to O(n−5/6 log(n)).

It is worth noticing that the rate that can be attained by the 2-split trick
variant of the ARBB for such chains is faster than the optimal rate the MBB
may achieve, which is typically of order O(n−3/4) under very strong assump-
tions (see [40], [53]). Other variants of the bootstrap (sieve bootstrap) for
time-series (see [21]) may also yield (at least pratically) very accurate approx-
imation (see [22]). When some specific non-linear structure is assumed for
the chain (see our example 3), nonparametric method estimation and residual
based resampling methods may also be used : see for instance [35]. However
to our knowledge, there is no explicit rate of convergence available for these
kinds of bootstrap techniques. An empirical comparison of all these recent
methods is under the scope of this paper but would be certainly of great help.

1.6 Some extensions to U -statistics

We now turn to extend some of the asymptotic results stated in sections 4
and 5 for sample mean statistics to a wider class of functionals and shall con-
sider statistics of the form

∑
16i6=j6n U(Xi, Xj). For the sake of simplicity, we

confined the study to U -statistics of degree 2, in the real case only. As will be
shown below, asymptotic validity of inference procedures based on such statis-
tics does not straightforwardly follow from results established in the previous
sections, even for atomic chains. Furthermore, whereas asymptotic validity of
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the (approximate) regenerative block-bootstrap for these functionals may be
easily obtained, establishing its second order validity and give precise rate
is much more difficult from a technical viewpoint and is left to a further
study. Besides, arguments presented in the sequel may be easily adapted to
V -statistics

∑
16i, j6n U(Xi, Xj).

1.6.1 Regenerative case

Given a trajectory X(n) = (X1, ..., Xn) of a Harris positive atomic Markov
chain with stationary probability law µ (refer to § 2.2 for assumptions and
notation), we shall consider in the following U -statistics of the form

Tn =
1

n(n− 1)

∑

16i 6=j6n

U(Xi, Xj), (1.23)

where U : E2 → R is a kernel of degree 2. Even if it entails introducing
the symmetrized version of Tn, it is assumed throughout the section that the
kernel U(x, y) is symmetric. Although such statistics have been mainly used
and studied in the case of i.i.d. observations, in dependent settings such as
ours, these statistics are also of interest, as shown by the following examples.

• In the case when the chain takes real values and is positive recurrent with
stationary distribution µ, the variance of the stationary distribution s2 =
Eµ((X − Eµ(X))2), if well defined (note that it differs in general from the
asymptotic variance of the mean statistic studied in § 4.1), may be consistently
estimated under adequate block moment conditions by

ŝ2
n =

1
n− 1

n∑

i=1

(Xi − µn)2 =
1

n(n− 1)

∑

16i 6=j6n

(Xi −Xj)2/2,

where µn = n−1
∑n

i=1 Xi, which is a U -statistic of degree 2 with symmetric
kernel U(x, y) = (x− y)2/2.

• In the case when the chain takes its values in the multidimensional space
Rp, endowed with some norm ||. ||, many statistics of interest may be written
as a U -statistic of the form

Un =
1

n(n− 1)

∑

16i6=j6n

H(||Xi −Xj ||),

where H : R → R is some measurable function. And in the particular case
when p = 2, for some fixed t in R2 and some smooth function h, statistics of
type

Un =
1

n(n− 1)

∑

16i 6=j6n

h(t, Xi, Xj)

arise in the study of the correlation dimension for dynamic systems (see [18]).
Depth statistical functions for spatial data are also particular examples of such
statistics (cf [81]).
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In what follows, the parameter of interest is

µ(U) =
∫

(x,y)∈E2
U(x, y)µ(dx)µ(dy), (1.24)

which quantity we assume to be finite. As in the case of i.i.d. observations, a
natural estimator of µ(U) in our markovian setting is Tn. We shall now study
its consistency properties and exhibit an adequate sequence of renormalizing
constants for the latter, by using the regeneration blocks construction once
again. For later use, define ωU : T2 → R by

ωU (x(k), y(l)) =
k∑

i=1

l∑

j=1

U(xi, yj),

for any x(k) = (x1, ..., xk), y(l) = (y1, ..., yl) in the torus T = ∪∞n=1E
n and

observe that ωU is symmetric, as U .

”Regeneration-based Hoeffding’s decomposition”

By the representation of µ as a Pitman’s occupation measure (cf Theorem
2.1), we have

µ(U) = α−2EA(
τA(1)∑

i=1

τA(2)∑

l=τA(1)+1

U(Xi, Xj))

= α−2E(ωU (Bl,Bk)),

for any integers k, l such that k 6= l. In the case of U -statistics based on
dependent data, the classical (orthogonal) Hoeffding decomposition (cf [80])
does not hold anymore. Nevertheless, we may apply the underlying projection
principle for establishing the asymptotic normality of Tn by approximatively
rewriting it as a U -statistic of degree 2 computed on the regenerative blocks
only, in a fashion very similar to the Bernstein blocks technique for strongly
mixing random fields (cf [30], [7]), as follows. As a matter of fact, the estimator
Tn may be decomposed as

Tn =
(ln − 1)(ln − 2)

n(n− 1)
Uln−1 + T (0)

n + T (n)
n + ∆n, (1.25)

where,

UL =
2

L(L− 1)

∑

16k<l6L

ωU (Bk,Bl),

T (0)
n =

2
n(n− 1)

∑

16k6ln−1

ωU (Bk,B0), T (n)
n =

2
n(n− 1)

∑

06k6ln−1

ωU (Bk,B(n)
ln

),

∆n =
1

n(n− 1)
{

ln−1∑

k=0

ωU (Bk,Bk) + ωU (B(n)
ln

,B(n)
ln

)−
n∑

i=1

U(Xi, Xi)}.
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Observe that the ”block diagonal part” of Tn, namely ∆n, may be straight-
forwardly shown to converge Pν- a.s. to 0 as n →∞, as well as T

(0)
n and T

(1)
n

by using the same arguments as the ones used in § 4.1 for dealing with sam-
ple means, under obvious block moment conditions (see conditions (ii)-(iii)
below). And, since ln/n → α−1 Pν- a.s. as n → ∞, asymptotic properties of
Tn may be derived from the ones of Uln−1, which statistic depends on the
regeneration blocks only. The key point relies in the fact that the theory of
U -statistics based on i.i.d. data may be straightforwardly adapted to func-
tionals of the i.i.d. regeneration blocks of the form

∑
k<l ωU (Bk,Bl). Hence,

the asymptotic behaviour of the U -statistic UL as L →∞ essentially depends
on the properties of the linear and quadratic terms appearing in the following
variant of Hoeffding’s decomposition. For k, l > 1, define

ω̃U (Bk,Bl) =
τA(k+1)∑

i=τA(k)+1

τA(l+1)∑

j=τA(l)+1

{U(Xi, Xj)− µ(U)}.

(notice that E(ω̃U (Bk,Bl)) = 0 when k 6= l) and for L > 1 write the expansion

UL − µ(U) =
2
L

L∑

k=1

ω
(1)
U (Bk) +

2
L(L− 1)

∑

16k<l6L

ω
(2)
U (Bk,Bl), (1.26)

where, for any b1 = (x1, ..., xl) ∈ T,

ω
(1)
U (b1) = E(ω̃U (B1,B2)|B1 = b1) = EA(

l∑

i=1

τA∑

j=1

ω̃U (xi, Xj))

is the linear term (see also our definition of the influence function of the
parameter E(ω(B1,B2)) in section 7) and for all b1, b2 in T,

ω
(2)
U (b1, b2) = ω̃U (b1, b2)− ω̃

(1)
U (b1)− ω̃

(1)
U (b2)

is the quadratic degenerate term (gradient of order 2). Notice that by using
the Pitman’s occupation measure representation of µ, we have as well, for any
b1 = (x1, ..., xl) ∈ T,

(EAτA)−1ω
(1)
U (b1) =

l∑

i=1

Eµ(ω̃U (xi, X1)).

For resampling purposes, we also introduce the U -statistic based on the
data between the first regeneration time and the last one only:

T̃n =
2

ñ(ñ− 1)

∑

1+τA6i<j6τA(ln)

U(Xi, Xj),

with ñ = τA(ln)− τA and T̃n = 0 when ln 6 1 by convention.
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Asymptotic normality and asymptotic validity of the RBB

Now suppose that the following conditions, which are involved in the next
result, are fulfilled by the chain.

(i) (Non degeneracy of the U -statistic)

0 < σ2
U = E(ω(1)

U (B1)2) < ∞.

(ii) (Block-moment conditions: linear part) For some s > 2,

E(ω(1)
|U |(B1)s) < ∞ and Eν(ω(1)

|U |(B0)2) < ∞.

(iii) (Block-moment conditions: quadratic part) For some s > 2,

E|ω|U |(B1,B2)|s < ∞ and E|ω|U |(B1,B1)|s < ∞,

Eν |ω|U |(B0,B1)|2 < ∞ and Eν |ω|U |(B0,B0)|2 < ∞.

By construction, under (ii)-(iii) we have the crucial orthogonality prop-
erty:

Cov(ω(1)
U (B1), ω

(2)
U (B1,B2)) = 0. (1.27)

Now a slight modification of the argument given in [47] allows to prove
straightforwardly that

√
L(UL − µ(U)) is asymptotically normal with zero

mean and variance 4σ2
U . Furthermore, by adapting the classical CLT ar-

gument for sample means of Markov chains (refer to [60] for instance)
and using (1.27) and ln/n → α−1 Pν-a.s. as n → ∞, one deduces that√

n(Tn − µ(U)) ⇒ N (0, Σ2) as n →∞ under Pν , with Σ2 = 4α−3σ2
U .

Besides, estimating the normalizing constant is important (for constructing
confidence intervals or bootstrap counterparts for instance). So we define the
natural estimator σ2

U, ln−1 of σ2
U based on the (asymptotically i.i.d.) ln − 1

regeneration data blocks by

σ2
U, L = (L− 1)(L− 2)−2

L∑

k=1

[(L− 1)−1
L∑

l=1,k 6=l

ωU (Bk,Bl)− UL]2,

for L > 1. The estimate σ2
U, L is a simple transposition of the jackknife esti-

mator considered in [23] to our setting and may be easily shown to be strongly
consistent (by adapting the SLLN for U -statistics to this specific functional of
the i.i.d regeneration blocks). Furthermore, we derive that Σ2

n → Σ2 Pν-a.s.,
as n →∞, where

Σ2
n = 4(ln/n)3σ2

U, ln−1.

We also consider the regenerative block-bootstrap counterparts T ∗n and Σ∗2
n

of T̃n and Σ2
n respectively, constructed via Algorithm 5 :
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T ∗n =
2

n∗(n∗ − 1)

∑

16i<j6n∗
U(X∗

i , X∗
j ),

Σ∗2
n = 4(l∗n/n∗)3σ∗2U, l∗n−1,

where n∗ denotes the length of the RBB data series X∗(n) = (X1, ..., Xn∗)
constructed from the l∗n − 1 bootstrap data blocks, and

σ∗2U, l∗n−1 = (l∗n − 2)(l∗n − 3)−2

l∗n−1∑

k=1

[(l∗n − 2)−1

l∗n−1∑

l=1,k 6=l

ωU (B∗k,B∗l )− U∗
l∗n−1]

2,

(1.28)

U∗
l∗n−1 =

2
(l∗n − 1)(l∗n − 2)

∑

16k<l6l∗n−1

ωU (B∗k,B∗l ).

We may then state the following result.

Theorem 9. If conditions (i)-(iii) are fulfilled with s = 4, then we have the
CLT under Pν

√
n(Tn − µ(U))/Σn ⇒ N (0, 1), as n →∞.

This limit result also holds for T̃n, as well as the asymptotic validity of the
RBB distribution: as n →∞,

sup
x∈R

|P∗(
√

n∗(T ∗n − T̃n))/Σ∗
n ≤ x)− Pν(

√
n(T̃n − µ(U))/Σn ≤ x)| Pν→ 0.

Whereas proving the asymptotic validity of the RBB for U -statistics un-
der these assumptions is straightforward (its second order accuracy up to
o(n−1/2) seems also quite easy to prove by simply adapting the argument used
by [46] under appropriate Cramer condition on ω

(1)
U (B1) and block-moment

assumptions), establishing an exact rate, O(n−1) for instance as in the case
of sample mean statistics, is much more difficult. Even if one try to reproduce
the argument in [8] consisting in partitioning the underlying probability space
according to every possible realization of the regeneration times sequence be-
tween 0 and n, the problem boils down to control the asymptotic behaviour
of the distribution P(

∑
16i 6=j6m ω

(2)
U (Bi,Bj)/σ2

U, m 6 y,
∑m

j=1 l(Bj) = l) as
m →∞, which is a highly difficult technical task̇ (due to the need of a simul-
taneous control of the lattice component and of the degenerate part of the
U-statistics).

Remark 7. We point out that the approach developed here to deal with the
statistic UL naturally applies to more general functionals of the regeneration
blocks

∑
k<l ω(Bk,Bl), with ω : T2 → R being some measurable function.

For instance, the estimator of the asymptotic variance σ̂2
n(f) proposed in §

4.1 could be derived from such a functional, that may be seen as a U -statistic
based on observation blocks with kernel ω(Bk,Bl) = (f(Bk)− f(Bl))2/2.
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1.6.2 General case

Suppose now that the observed trajectory X(n+1) = (X1, ..., Xn+1) is drawn
from a general Harris positive chain with stationary probability µ (see § 2.2 for
assumptions and notation). Using the split chain, we have the representation
of the parameter µ(U) :

µ(U) = EAM(τAM)−2EAM(ωU (B1,B2)).

Using the pseudo-blocks B̂l, 1 6 l 6 l̂n−1, as constructed in § 3.2, we consider
the sequence of renormalizing constants for Tn :

Σ̂2
n = 4(l̂n/n)3σ̂2

U, bln−1
, (1.29)

with

σ̂2
U, bln−1

= (l̂n − 2)(l̂n − 3)−2

bln−1∑

k=1

[(l̂n − 2)−1

bln−1∑

l=1,k 6=l

ωU (B̂k, B̂l)− Ûbln−1]
2,

Ûbln−1 =
2

(l̂n − 1)(l̂n − 2)

∑

16k<l6bln−1

ωU (B̂k, B̂l).

We also introduce the U -statistic computed from the first approximate regen-
eration time and the last one:

T̂n =
2

n̂(n̂− 1)

∑

1+bτA(1)6i<j6bτA(ln)

U(Xi, Xj),

with n̂ = τ̂A(l̂n)− τ̂A(1). Let us define the bootstrap counterparts T ∗n and Σ∗
n

of T̂n and Σ̂2
n constructed from the pseudo-blocks via Algorithm 5. Although

approximate blocks are used here instead of the (unknown) regenerative ones
Bl, 1 6 l 6 ln−1, asymptotic normality still holds under appropriate assump-
tions, as shown by the theorem below, which we state in the only case when
the kernel U is bounded (with the aim to make the proof simpler).

Theorem 10. Suppose that the kernel U(x, y) is bounded and that H2, H3,
H4 are fulfilled, as well as (i)-(iii) for s = 4. Then we have as n →∞,

Σ̂2
n → Σ2 = 4EAM(τAM)−3EAM(ω(1)

U (B1)2), in Pν-pr.

Moreover as n →∞, under Pν we have the convergence in distribution

n1/2Σ̂−1
n (Tn − µ(U)) ⇒ N (0, 1),

as well as the asymptotic validity of the ARBB counterpart

sup
x∈R

|P∗(
√

n∗(T ∗n − T̂n))/Σ∗
n ≤ x)− Pν(

√
n(T̂n − µ(U))/Σ̂n ≤ x)| Pν→

n→∞
0.
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Proof. By applying the results of § 6.1 to the split chain, we get that the
variance of the limiting (normal) distribution of

√
n(Tn − µ(U)) is Σ2 =

4EAM(τAM)−3EAM(ω(1)
U (B1)2). The key point of the proof consists in consid-

ering an appropriate coupling between (Xi, Yi)16i6n and (Xi, Ŷi)16i6n (or
equivalently between the sequence of the ”true” regeneration times between
0 and n and the sequence of approximate ones), so as to control the deviation
between functionals constructed from the regeneration blocks and their coun-
terparts based on the approximate ones. The coupling considered here is the
same as the one used in the proof of Theorem 3.1 in [10] (refer to the latter
article for a detailed construction). We shall now evaluate how σ̂2

U, bln−1
differs

from σ2
U, ln−1, its counterpart based on the ”true” regeneration blocks. Ob-

serve first that

Tn =
n̂(n̂− 1)
n(n− 1)

T̂n + T̂ (0)
n + T̂ (n)

n + ∆̂n,

where

T̂ (0)
n =

2
n(n− 1)

∑

16k6bln−1

ωU (B̂k, B̂0), T̂ (n)
n =

2
n(n− 1)

∑

06k6ln−1

ωU (B̂k, B̂(n)
bln

),

∆̂n =
1

n(n− 1)
{
bln−1∑

k=0

ωU (B̂k, B̂k) + ωU (B̂(n)
bln

, B̂(n)
bln

)−
n∑

i=1

U(Xi, Xi)}.

Now following line by line the proof of lemma 5.2 in [10], we obtain that, as
n →∞, n̂/n−1 = OPν (1), ∆̂n−∆n, T̂

(0)
n −T̂

(0)
n and T̂

(n)
n −T̂

(n)
n are OPν (n−1).

It follows thus that T̂n = Tn + oPν (n−1/2) as n → ∞, and
√

n(T̂n − µ(U)) is
asymptotically normal with variance Σ2. The same limit results is straightfor-
wardly available then for the Bootstrap version by standard regenerative argu-
ments. Furthermore, by Lemma 5.3 in [10] we have | l̂n/n− ln/n |= OPν (α1/2

n )
as n → ∞, and thus l̂n/n → EAM(τAM)−1 in Pν-pr. as n → ∞. It then fol-
lows by simple (especially when U is bounded) but tedious calculations that
Σ̂2

n −Σ2
n = Dn + oPν (1) as n →∞, with

Dn = 4(ln/n)3[l̂−1
n

bln−1∑

i=1

{ 1

l̂n − 2

bln−1∑

j=1,j 6=i

ωU (B̂i, B̂j)}2

− l−1
n

ln−1∑

i=1

{ 1
ln − 2

ln−1∑

j=1,j 6=i

ωU (Bi,Bj)}2].

Now set ĝn(B̂i) = (l̂n − 2)−1
∑bln−1

j=1,j 6=i ωU (B̂i, B̂j) for i ∈ {1, ..., l̂n − 1} and

gn(Bi) = (ln − 2)−1
∑ln−1

j=1,j 6=i ωU (Bi,Bj) for i ∈ {1, ..., l̂n − 1}. By standard
arguments on U -statistics (see for instance [46] and the references therein)
and using once again lemma 5.1 and 5.2 in [9], we have uniformly in i ∈
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{1, ..., l̂n − 1} (resp. in i ∈ {1, ..., l̂n − 1}), ĝn(B̂i) = ω
(1)
U (B̂i) + oPν (1) (resp.

gn(Bi) = ω
(1)
U (Bi) + oPν

(1)) as n → ∞. Such uniform bounds are facilitated
by the boundedness assumption on U , but one may expect that with refined
computations the same results could be established for unbounded kernels.

It follows that as n →∞,

∆n = 4(ln/n)3[l̂−1
n

bln−1∑

i=1

{ω(1)
U (B̂i)}2 − l−1

n

ln−1∑

i=1

{ω(1)
U (Bi)}2] + oPν

(1).

The first term in the right hand side is also oPν
(1) by lemma 5.2 in [10].

The proof of the asymptotic validity of the Bootstrap version is established
by following the preceding lines: it may be easily checked by first reducing
the problem to a sum and following the proof of Theorem 3.3 in [10]. As in
the i.i.d case, this asymptotic result essentially boils down then to check that
the empirical moments converge to the theoretical ones. This can be done by
adapting standard SLLN arguments for U -statistics.

1.7 Robust functional parameter estimation

Extending the notion of influence function and/or robustness to the frame-
work of general time series is a difficult task (see [51] or [59]). Such concepts
are important not only to detect ”outliers” among the data or influential ob-
servations but also to generalize the important notion of efficient estimation
in semiparametric frameworks (see the recent discussion in [13] for instance).
In the markovian setting, a recent proposal based on martingale approxima-
tion has been made by [61]. Here we propose an alternative definition of the
influence function based on the (approximate) regeneration blocks construc-
tion, which is easier to manipulate and immediately leads to central limit and
convolution theorems.

1.7.1 Defining the influence function on the torus

The leitmotiv of this paper is that most parameters of interest related to
Harris chains are functionals of the distribution L of the regenerative blocks
(observe that L is a distribution on the torus T = ∪n>1E

n), namely the
distribution of (X1, ...., XτA

) conditioned on X0 ∈ A when the chain pos-
sesses an atom A, or the distribution of (X1, ...., XτAM ) conditioned on (X0,
Y0) ∈ AM in the general case when one considers the split chain (refer to
section 2 for assumptions and notation, here we shall omit the subscript
A and M in what follows to make the notation simpler). In view of The-
orem 2.1, this is obviously true in the positive recurrent case for any func-
tional of the stationary law µ. But, more generally, the probability distribu-
tion Pν of the Markov chain X starting from ν may be decomposed as fol-
lows: Pν((Xn)n>1) = Lν((X1, ...., XτA(1)))

∏∞
k=1 L((X1+τA(k), ...., XτA(k+1))),
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denoting by Lν the distribution of (X1, ...., XτA
) conditioned on X0 ∼ ν.

Thus any functional of the law of (Xn)n>1 may be seen as a functional of (Lν ,
L). However, pointing out that the distribution of Lν cannot be estimated
in most cases encountered in practice, only functionals of L are of practical
interest. The object of this subsection is to propose the following definition
of the influence function for such functionals. Let PT denote the set of all
probability measures on the torus T and for any b ∈ T, set l(b) = k if b ∈ Ek,
k > 1. We then have the following natural definition, that straightforwardly
extends the classical notion of influence function in the i.i.d. case, with the
important novelty that distributions on the torus are considered here.

Definition 1. Let T : PT → R be a functional on PT. If for L in PT,
t−1(T ((1 − t)L + tδb) − T (L)) has a finite limit as t → 0 for any b ∈ T,
then the influence function T (1) of the functional T is well defined, and by
definition one has for all b in T,

T (1)(b, L) = lim
t→0

T ((1− t)L+ tδb)− T (L)
t

. (1.30)

1.7.2 Some examples

The relevance of this definition is illustrated through the following examples,
which aim to show how easy it is to adapt known calculations of influence
function on R to this framework.

a) Suppose that X is positive recurrent with stationary distribution µ. Let
f : E → R be µ-integrable and consider the parameter µ0(f) = Eµ(f(X)).
Denote by B a r.v. valued in T with distribution L and observe that µ0(f) =
EL (f(B))/EL (l(B)) = T (L) (recall the notation f(b) =

∑l(b)
i=1 f(bi) for any

b ∈ T). A classical calculation for the influence function of ratios yields then

T (1)(b,L) =
d

dt
(T ((1− t)L+ tb)|t=0 =

f(b)− µ(f)l(b)
EL (l(B))

Notice that EL(T (1)(B,L)) = 0.
b) Let θ be the unique solution of the equation: Eµ(ψ(X, θ)) = 0, where

ψ : R2 → R is C2. Observing that it may be rewritten as EL(ψ(B, θ)) = 0, a
similar calculation to the one used in the i.i.d. setting (if differentiating inside
the expectation is authorized) gives in this case

T
(1)
ψ (b,L) = − ψ(b, θ)

EA(
∑τA

i=1
∂ψ(Xi,θ)

∂θ )
.

By definition of θ, we naturally have EL(T (1)
ψ (B,L)) = 0.

c) Assuming that the chain takes real values and its stationary law µ has
zero mean and finite variance, let ρ be the correlation coefficient between
consecutive observations under the stationary distribution:
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ρ =
Eµ(XnXn+1)
Eµ(X2

n)
=
EA(

∑τA

n=1 XnXn+1)
EA(

∑τA

n=1 X2
n)

.

For all b in T, the influence function is

T (1)
ρ (b,L) =

∑l(b)
i=1 bi(bi+1 − ρbi)
EA(

∑τA

t=1 X2
t )

,

and one may check that EL(T (1)
ρ (B,L)) = 0.

d) It is now possible to reinterpret the results obtained for U -statistics in
section 6. With the notation above, the parameter of interest may be rewritten

µ(U) = EL (l(B))−2EL×L(U(B1,B2)),

yielding the influence function: ∀b ∈ T,

µ(1)(b,L) = 2EL (l(B))−2EL(ω̃U (B1,B2)|B1 = b).

1.7.3 Main results

In order to lighten the notation, the study is restricted to the case when
X takes real values, i.e. E ⊂ R, but straightforwardly extends to a more
general framework. Given an observed trajectory of length n, natural em-
pirical estimates of parameters T (L) are of course the plug-in estimators
T (Ln) based on the empirical distribution of the observed regeneration blocks
Ln = (ln − 1)−1

∑ln−1
j=1 δBj ∈ PT in the atomic case, which is defined as soon

as ln > 2 (notice that Pν(ln 6 1) = O(n−1) as n →∞, if H0(1, ν) and H0(2)
are satisfied). For measuring the closeness between Ln and L, consider the
bounded Lipschitz type metric on PT

dBL(L,L′) = sup
f∈Lip1

T

{
∫

f(b)L(db)−
∫

f(b)L′(db)}, (1.31)

for any L, L′ in PT, denoting by Lip1
T the set of functions F : T→ R of type

F (b) =
∑l(b)

i=1 f(bi), b ∈ T, where f : E → R is such that supx∈E |f(x)| 6 1
and is 1-Lipschitz. Other metrics (of Zolotarev type for instance, cf [68]) may
be considered. In the general Harris case (refer to § 3.2 for notation), the in-
fluence function based on the atom of the split chain, as well as the empirical
distribution of the (unobserved) regeneration blocks have to be approximated
to be of practical interest. Once again, we shall use the approximate regen-
eration blocks B̂1, ..., B̂bln−1 (using Algorithm 2, 3 ) in the general case and
consider

L̂n = (l̂n − 1)
bln−1∑

j=1

δ bBj
,

when l̂n > 2. The following theorem provides an asymptotic bound for the
error committed by replacing the empirical distribution Ln of the ”true” re-
generation blocks by L̂n, when measured by dBL.
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Theorem 11. Under H′
0(4),H′

0(4, ν),H2, H3 and H4, we have

dBL(Ln, L̂n) = O(α1/2
n ), as n →∞.

And if in addition dBL(Ln,L) = O(n−1/2) as n →∞, then

dBL(Ln, L̂n) = O(α1/2
n n−1/2), as n →∞.

Proof. With no loss of generality, we assume the Xi’s centered. From lemma
5.3 in [10], we have ln/l̂n − 1 = OPν

(α1/2
n ) as n →∞. Besides, writing

dBL(Ln, L̂n) ≤ (
ln − 1

l̂n − 1
− 1) sup

f∈Lip1
T

| 1
ln − 1

ln−1∑

j=1

f(Bj)|

+
n

l̂n − 1
sup

f∈Lip1
T

|n−1
ln−1∑

j=1

f(Bj)− n−1

bln−1∑

j=1

f(B̂j)|, (1.32)

and observing that supf∈Lip1
T
|(ln−1)−1

∑ln−1
j=1 f(Bj)| 6 1, we get that the first

term in the right hand side is OPν (α1/2
n ) as n →∞. Now as supx∈E |f(x)| 6 1,

we have

|n−1(
ln∑

j=1

f(Bj)−
bln∑

j=1

f(B̂j))| ≤ n−1(|τ̂AM(1)−τAM(1)|+ |τ̂AM(ln)− τ̂AM(ln)|),

and from lemma 5.1 in by [9], the term in the right hand side is oPν (n−1) as
n →∞. We thus get

dBL(Ln, L̂n) ≤ α1/2
n dBL(Ln,L) + oPν (n−1), as n →∞.

And this completes the proof.

Given the metric on PT defined by dBL, we consider now the Fréchet
differentiability for functionals T : PT → R.

Definition 2. We say that T is Fréchet-differentiable at L0 ∈ PT, if there
exists a linear operator DT

(1)
L0

and a function ε(1)(.,L0): R→ R, continuous
at 0 with ε(1)(0,L0) = 0, such that:

∀L ∈ PT, T (L)− T (L0) = D(1)TL0(L − L0) + R(1)(L,L0),

with R(1)(L,L0) = dBL(L,L0)ε(1)(dBL(L,L0),L0). Moreover, T is said to
have a canonical gradient (or influence function) T (1)(.,L0), if one has the
following representation for DT

(1)
L0

:

∀L ∈ PT, DT
(1)
L0

(L − L0) =
∫

T
T (1)(b,L0)L(db).
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Now it is easy to see that from this notion of differentiability on the
torus one may directly derive CLT’s, provided the distance d(Ln,L) may
be controlled.

Theorem 12. In the regenerative case, if T : PT → R is Fréchet differentiable
at L and dBL(Ln,L) = OPν (n−1/2) (or R(1)(Ln,L) = oPν (n−1/2)) as n →∞,
and if EA(τA) < ∞ and 0 < V arA(T (1)(B1,L)) < ∞ then under Pν ,

n1/2(T (Ln)− T (L)) ⇒ N (0,EA(τA)V arA(T (1)(B1,L)), as n →∞.

In the general Harris case, if the split chain satisfies the assumptions above
(with A replaced by AM), under the assumptions of Theorem 11, as n → ∞
we have under Pν ,

n1/2(T (L̂n)− T (L)) ⇒ N (0,EAM(τAM)V arAM(T (1)(B1,L)).

The proof is straightforward and left to the reader. Observe that if one
renormalizes by l

1/2
n instead of renormalizing by n1/2 in the atomic case (resp.,

by l̂
1/2
n in the general case), the asymptotic distribution would be simply

N (0, V arA(T (1)(B1,L)) (resp., V arAM(T (1)(B1,L)), which depends on the
atom chosen (resp. on the parameters of condition M).

Then going back to the preceding examples, we straightforwardly deduce
the following results.

a) Noticing that n1/2/l
1/2
n → EA(τA)1/2 Pν- a.s. as n → ∞, we immedi-

ately get that under Pν , as n →∞,

n1/2(µn(f)− µ(f)) ⇒ N (0,EA(τA)−1V arA(
τA∑

i=1

(f(Xi)− µ(f)).

b) In a similar fashion, under smoothness assumptions ensuring Fréchet
differentiability, the M -estimator θ̂n being the (unique) solution of the block-
estimating equation

τA(ln)∑

i=τA+1

ψ(Xi, θ) =
ln∑

j=1

τA(j+1)∑

i=τA(j)+1

ψ(Xi, θ) = 0,

we formally obtain that, if EA(
∑τA

i=1
∂ψ(Xi,θ)

∂θ ) 6= 0 and θ is the true value of
the parameter, then under Pν , as n →∞,

n1/2(θ̂n − θ) ⇒ N (0, [
EA(

∑τA

i=1
∂ψ(Xi,θ)

∂θ )
EA(τA)

]−2 V arA(
∑τA

i=1 ψ(Xi, θ))
EA(τA)

).

Observe that both factors in the variance are independent from the atom A
chosen. It is worth noticing that, by writing the asymptotic variance in this
way, as a function of the distribution of the blocks, a consistent estimator
for the latter is readily available, from the (approximate) regeneration blocks.
Examples c) and d) may be treated similarly.
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Remark 8. The concepts developed here may also serve as a tool for robust-
ness purpose, for deciding whether a specific data block has an important
influence on the value of some given estimate or not, and/or whether it may
be considered as ”outlier”. The concept of robustness we introduce is related
to blocks of observations, instead of individual observations. Heuristically, one
may consider that, given the regenerative dependency structure of the pro-
cess, a single suspiciously outlying value at some time point n may have a
strong impact on the trajectory, until the (split) chain regenerates again, so
that not only this particular observation but the whole ”contaminated” seg-
ment of observations should be eventually removed. Roughly stated, it turns
out that examining (approximate) regeneration blocks as we propose before,
allows to identify more accurately outlying data in the sample path, as well as
their nature (in the time series context, different type of outliers may occur,
such as additive or innovative outliers). By comparing the data blocks (their
length, as well as the values of the functional of interest on these blocks) this
way, one may detect the ones to remove eventually from further computations.

1.8 Some extreme values statistics

We now turn to statistics related to the extremal behaviour of functionals of
type f(Xn) in the atomic positive Harris recurrent case, where f : (E, E) → R
is a given measurable function. More precisely, we shall focus on the limiting
distribution of the maximum Mn(f) = max16i6n f(Xi) over a trajectory of
length n, in the case when the chain X possesses an accessible atom A (see
[3] and the references therein for various examples of such processes X in the
area of queuing systems and a theoretical study of the tail properties of Mn(f)
in this setting).

Submaxima over regeneration blocks

For j > 1, we define the ”submaximum” over the j-th cycle of the sample
path:

ζj(f) = max
1+τA(j)6i6τA(j+1)

f(Xi).

The ζj(f)’s are i.i.d. r.v.’s with common d.f. Gf (x) = P(ζ1(f) 6 x). The
following result established by [75] shows that the limiting distribution of
the sample maximum of f(X) is entirely determined by the tail behaviour
of the df Gf and relies on the crucial observation that the maximum value
Mn(f) = max16i6n f(Xi) over a trajectory of length n, may be expressed in
terms of ”submaxima” over regeneration blocks as follows

Mn(f) = max(ζ0(f), max
16j6ln−1

ζj(f), ζ
(n)
ln

(f)),

where ζ0(f) = max16i6τA
f(Xi) and ζ

(n)
ln

(f) = max1+τA(ln)6i6n f(Xi) de-
note the maxima over the non regenerative data blocks, and with the usual
convention that the maximum over an empty set equals −∞.



1 Regeneration-based statistics for Harris recurrent Markov chains 43

Proposition 4. (see [75]). Let α = EA(τA) be the mean return time to the
atom A. Under the assumption (A1) that the first (non-regenerative) block
does not affect the extremal behaviour, i.e. Pν(ζ0(f) > max16k6l ζk(f)) → 0
as l →∞, we have

sup
x∈R

| Pν(Mn(f) 6 x)−Gf (x)n/α |→ 0, as n →∞. (1.33)

Hence, as soon as condition (A1) is fulfilled, the asymptotic behaviour of
the sample maximum may be deduced from the tail properties of Gf . In partic-
ular, the limiting distribution of Mn(f) (for a suitable normalization) is the ex-
treme df Hξ(x) of shape parameter ξ ∈ R (with Hξ(x) = exp(−x−1/ξ)I{x > 0}
when ξ > 0, H0(x) = exp(− exp(−x)) and Hξ(x) = exp(−(−x)−1/ξ)I{x < 0}
if ξ < 0) iff Gf belongs to the maximum domain of attraction MDA(Hξ)
of the latter df (refer to [69] for basics in extreme value theory). Thus,
when Gf ∈ MDA(Hξ), there are sequences of norming constants an and
bn such that Gf (anx + bn)n → Hξ(x) as n → ∞, we then have Pν(Mn(f) 6
a′nx + bn) → Hξ(x) as n →∞, with a′n = an/αξ.

Tail estimation based on submaxima over regeneration blocks

In the case when assumption (A1) holds, one may straightforwardly derive
from (1.33) estimates of Hf, n(x) = Pν(Mn(f) 6 x) as n → ∞ based on the
observation of a random number of submaxima ζj(f) over a sample path, as
proposed in [36]:

Ĥf, n, l(x) = (Ĝf, n(x))l,

with 1 6 l 6 ln and denoting by Ĝf, n(x) = 1
ln−1

∑ln−1
i=1 I{ζj(f) 6 x} the

empirical df of the ζj(f)’s (with Ĝf, n(x) = 0 by convention when ln 6 1).
We have the following limit result (see also Proposition 3.6 in [36] for a dif-
ferent formulation, stipulating the observation of a deterministic number of
regeneration cycles).

Proposition 5. Let (un) be such that n(1−Gf (un))/α → η < ∞ as n →∞.
Suppose that assumptions H0(1, ν) and (A1) holds, then Hf, n(un) → exp(−η)
as η →∞. And let Nn ∈ N such that Nn/n2 → 0 as n →∞, then we have

Ĥf, Nn, ln(un)/Hf, n(un) → 1 in Pν- probability, as n →∞. (1.34)

Moreover if Nn/n2+ρ → ∞ as n → ∞ for some ρ > 0, this limit result also
holds Pν- a.s. .

Proof. First, the convergence Hf, n(un) → exp(−η) as η → ∞ straight-
forwardly follows from Proposition 8.1. Now we shall show that ln(1 −
Ĝf, Nn(un)) → η in Pν- pr. as n →∞. As ln/n → α−1 Pν- a.s. as n →∞ by
the SLLN, it thus suffices to prove that

n(Gf (un)− Ĝf, Nn(un)) → 0 in Pν − pr . as n →∞. (1.35)
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Write

n(Gf (un)− Ĝf, Nn
(un)) =

Nn

lNn − 1
n

Nn

lNn−1∑

j=1

{I{ζj(f) 6 un} −Gf (un)},

and observe that Nn/(lNn − 1) → α, Pν- a.s. as n → ∞ by the SLLN again.
Besides, from the argument of Theorem 15 in [26], we easily derive that there
exist constants C1 and C2 such that for all ε > 0, n ∈ N

Pν




∣∣∣∣∣∣

lNn−1∑

j=1

{I{ζj(f) 6 un} −Gf (un)}
∣∣∣∣∣∣
> ε


 6 C1 exp(−C2ε

2/Nn)

+ Pν (τA > Nn) .

From this bound, one immediately establishes (1.35). And in the case when
Nn = n2+ρ for some ρ > 0, Borell-Cantelli’s lemma, combined with the latter
bound shows that the convergence also takes place Pν-almost surely.

This result indicates that observation of a trajectory of length Nn, with
n2 = o(Nn) as n → ∞, is required for estimating consistently the extremal
behaviour of the chain over a trajectory of length n. As shall be shown below,
it is nevertheless possible to estimate the tail of the sample maximum Mn(f)
from the observation of a sample path of length n only, when assuming some
type of behaviour for the latter, namely under maximum domain of attraction
hypotheses. As a matter of fact, if one assume that Gf ∈ MDA(Hξ) for
some ξ ∈ R, of which sign is a priori known, one may implement classical
inference procedures (refer to § 6.4 in [32] for instance) from the observed
submaxima ζ1(f), ..., ζln−1(f) for estimating the shape parameter ξ of the
extremal distribution, as well as the norming constants an and bn. We now
illustrate this point in the Fréchet case (i.e. when ξ > 0), through the example
of the Hill inference method.

Heavy-tailed stationary distribution

As shown in [75], when the chain takes real values, assumption (A1) is checked
for f(x) = x (for this specific choice, we write Mn(f) = Mn, Gf = G, and
ζj(f) = ζj in what follows) in the particular case when the chain is stationary,
i.e. when ν = µ. Moreover, it is known that when the chain is positive recurrent
there exists some index θ, namely the extremal index of the sequence X =
(Xn)n∈N (see Leadbetter & [75] for instance), such that

Pµ(Mn 6 x) ∼
n→∞

Fµ(x)nθ, (1.36)

denoting by Fµ(x) = µ(]−∞, x]) = α−1EA(
∑τA

i=1 I{Xi 6 x}) the stationary
df. In this case, as remarked in [75], if (un) is such that n(1 − G(un))/α →
η < ∞, we deduce from Proposition 8.1 and (1.36) that



1 Regeneration-based statistics for Harris recurrent Markov chains 45

θ = lim
n→∞

PA(max16i6τA
Xi > un)

EA(
∑τA

i=1 I{Xi > un}) .

We may then propose a natural estimate of the extremal index θ based on the
observation of a trajectory of length N ,

θ̂N =

∑lN−1
j=1 I{ζj > un}∑N
i=1 I{Xi > un}

,

which may be shown to be consistent (resp., strongly consistent) under Pµ

when N = Nn is such that Nn/n2 →∞ (resp. Nn/n2+ρ →∞ for some ρ > 0)
as n →∞ and H0(2) is fulfilled by reproducing the argument of Proposition
9.2. And Proposition 8.1 combined with (1.36) also entails that for all ξ in R,

G ∈ MDA(Hξ) ⇔ Fµ ∈ MDA(Hξ).

Regeneration-based Hill estimator

This crucial equivalence holds in particular in the Fréchet case, i.e. for ξ > 0.
Recall that assuming that a df F belongs to MDA(Hξ) classically amounts
then to suppose that it satisfies the tail regularity condition

1− F (x) = L(x)x−a,

where a = ξ−1 and L is a slowly varying function, i.e. a function L such
that L(tx)/L(x) → 1 as x → ∞ for any t > 0 (cf Theorem 8.13.2 in [14]).
Since the seminal contribution of [45], numerous papers have been devoted to
the development and the study of statistical methods in the i.i.d. setting for
estimating the tail index a > 0 of a regularly varying df. Various inference
methods, mainly based on an increasing sequence of upper order statistics,
have been proposed for dealing with this estimation problem, among which the
popular Hill estimator, relying on a conditional maximum likelihood approach.
More precisely, based on i.i.d. observations X1, ...., Xn drawn from F , the Hill
estimator is given by

HX
k, n = (k−1

k∑

i=1

ln
X(i)

X(k+1)
)−1, (1.37)

where X(i) denotes the i-th largest order statistic of the sample X(n) = (X1, ...,
Xn), 1 6 i 6 n, 1 6 k < n . Strong consistency (cf [28]) of this estimate has
been established when k = kn → ∞ at a suitable rate, namely for kn = o(n)
and ln lnn = o(kn) as n →∞, as well as asymptotic normality (see [38]) under
further conditions on F and kn,

√
kn(HX

kn,n−a) ⇒ N (0, a2), as n →∞. Now
let us define the regeneration-based Hill estimator from the observation of the
ln−1 submaxima ζ1, ..., ζln−1, denoting by ξ(j) the j-th largest submaximum,



46 Patrice Bertail and Stéphan Clémençon

ân, k = Hζ
k, ln−1 = (k−1

k∑

i=1

ln
ζ(i)

ζ(k+1)
)−1.

Given that ln →∞, Pν- a.s. as n →∞, results established in the case of i.i.d.
observations straightforwardly extend to our setting (for comparison purpose,
see [71] for properties of the classical Hill estimate in dependent settings).

Proposition 6. Suppose that Fµ ∈ MDA(Ha−1) with a > 0. Let (kn) be
an increasing sequence of integers such that kn 6 n for all n, kn = o(n)
and ln lnn = o(kn) as n → ∞. Then the regeneration-based Hill estimator is
strongly consistent

ân, kln−1 → a, Pν- a.s., as n →∞.

Under the further assumption that Fµ satisfies the Von Mises condition and
that kn is chosen accordingly (cf [38]), it is moreover asymptotically normal
in the sense that

√
kln−1(ân, kln−1 − a) ⇒ N (0, a2) under Pν , as n →∞.

1.9 Concluding remarks

Although we are far from having covered the unifying theme of statistics based
on (pseudo-) regeneration for Harris Markov chains, an exhaustive treatment
of the possible applications of this methodology being naturally beyond the
scope of the present survey article, we endeavoured to present here enough
material to illustrate the power of this method. Most of the results reviewed
in this paper are very recent (or new) and this line of research is still in de-
velopment. Now we conclude by making a few remarks raising several open
questions among the topics we focussed on, and emphasizing the potential
gain that the regeneration-based statistical method could provide in further
applications.
• We point out that establishing sharper rates for the 2nd order accuracy
of the ARBB when applied to sample mean statistics in the general Harris
case presents considerable technical difficulties (at least to us). However, one
might expect that this problem could be successfully addressed by refining
some of the (rather loose) bounds put forward in the proof. Furthermore, as
previously indicated, extending the argument to U -statistics requires to prove
preliminar nonuniform limit theorems for U -statistics of random vectors with
a lattice component.
• In numerous applications it is relevant to consider null recurrent (even-
tually regenerative) chains: such chains frequently arise in queuing/network
systems, related to teletraffic data for instance (see [70] or [37] for example),
with heavy-tailed cycle lengths. Hence, exploring the theoretical properties
of the (A)RBB for these specific time series provides thus another subject
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of further research: as shown by [50], consistent estimates of the transition
kernel, as well as rates of convergence for the latter, may still be exhibited
for β-recurrent null chains (i.e. chains for which the return time to an atom
is in the domain of attraction of a stable law with β ∈]0, 1[ being the stable
index), so that extending the asymptotic validity of the (A)RBB distribution
in this case seems conceivable.
• Turning to the statistical study of extremes now (which matters in insur-
ance and finance applications for instance), a thorough investigation of the
asymptotic behaviour of extreme value statistics based on the approximate
regeneration blocks remains to be carried out in the general Harris case.

We finally mention ongoing work on empirical likelihood estimation in the
markovian setting, for which methods based on (pseudo-) regeneration blocks
are expected to provide significant results.
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32. Embrechts, P., Klüppelberg, C., Mikosch, T. (2001). Modelling Extremal Events.
Springer-Verlag.

33. Feller, W. (1968). An Introduction to Probability Theory and its Applications:
vol. I. John Wiley & Sons, NY, 2nd edition.

34. Feller, W. (1971). An Introduction to Probability Theory and its Applications:
vol. II. John Wiley & Sons, NY, 3rd edition

35. Franke, J. , Kreiss, J. P., Mammen, E. (2002). Bootstrap of kernel smoothing
in nonlinear time series. Bernoulli, 8, 1–37.

36. Glynn, W.P., Zeevi, A. (2000). Estimating Tail Probabilities in Queues via Ex-
tremal Statistics. In Analysis of Communication Networks: Call Centres, Traffic,
and Performance [ D.R. McDonald and S.R. Turner, eds. ] AMS, Providence,
Rhode Island, 135-158.

37. Glynn, W.P., Whitt, W. (1995). Heavy-Traffic Extreme-Value Limits for
Queues. Op. Res. Lett. 18, 107-111.

38. Goldie, C.M. (1991). Implicit renewal theory and tails of solutions of random
equations. Ann. Appl. Prob., 1, 126-166.



1 Regeneration-based statistics for Harris recurrent Markov chains 49

39. Götze, F., Hipp, C. (1983). Asymptotic expansions for sums of weakly dependent
random vectors. Zeit. Wahrschein. verw. Geb., 64, 211-239.
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