Interpreting Logical Expressions

Class 3
The syntactic road

D. Bonnay & D. Westerståhl

13 juillet 2016

The syntactic road

Basic ideas:

- meaning as inferential role : what LC mean should be characterized in terms of inference rules,
- systematic analysis of meaning: the goal is to understand why we have the LC that we have,
- logical pluralism: there is a core meaning to LC acrosse different logics,
- the normativity of logic: the foes are not so much non-logical symbols than spurious logical constants which would render the system inconsistent.

Proof theoretic analysis of LC

The analysis differ depending on the favored proof format :

- natural deduction, with introduction and elimination rules,
- sequent calculus, with introduction rules on both sides of the turnstyle,
- display logic, with structured sequents.

Proof theoretic analysis of LC

The analysis differ depending on the favored proof format :

- natural deduction, with introduction and elimination rules,
- sequent calculus, with introduction rules on both sides of the turnstyle,
- display logic, with structured sequents.

structural analysis of LC within a sequent system:
K. Došen, 1989, "Logical Constants as Punctuation Marks", NDJFL.
G. Sambin, G. Battitlotti, Cl. Faggian, 2000, "Basic logic: reflection,

symmetry, visibility", JSL.

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land$$

The idea

Structural calculus: principles of 'pure' deduction which can be described independently of the constants of the object language.

The idea

Structural calculus: principles of 'pure' deduction which can be described independently of the constants of the object language.

A structural calculus $\mathcal C$ is :

- 1. A structural language \mathcal{L} whose vocabulary consists of :
 - ▶ A set of propositional variables *A*, *B*, *C*, ...
 - ► Two binary punctuation symbol : , and *vdash*
- 2. proof rules for sequences of symbols in \mathcal{L} .

The idea

Structural calculus: principles of 'pure' deduction which can be described independently of the constants of the object language.

A structural calculus $\mathcal C$ is :

- 1. A structural language \mathcal{L} whose vocabulary consists of :
 - ▶ A set of propositional variables *A*, *B*, *C*, ...
 - ► Two binary punctuation symbol : , and *vdash*
- 2. proof rules for sequences of symbols in \mathcal{L} .

For example :

$$\frac{\Gamma, A \vdash B \qquad \Delta \vdash B}{\Gamma, A, \Delta \vdash B}$$

should be read:

(((Γ and A) yields B) and (Δ yields B)) yields ((Γ and A and Δ) yields B)

Rules of C in Basic Logic

- Identity Axioms
 A ⊢ A
- Exchange rules

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, B, A \vdash \Delta} Ex L \qquad \frac{\Gamma \vdash A, B\Delta}{\Gamma \vdash B, A\Delta} Ex L$$

► Cut

$$\frac{\Gamma \vdash A \qquad \Gamma' \vdash \Delta}{\Gamma'(\Gamma/A) \vdash \Delta} \text{ cut L} \qquad \frac{\Gamma \vdash \Delta' \qquad A \vdash \Delta}{\Gamma \vdash \Delta'(\Delta/A)} \text{ cut R}$$

Definitional Equations

Defining LC: to be able to find equivalences between expressions containing a LC and expressions deprived of it.

Definitional Equations

- Defining LC: to be able to find equivalences between expressions containing a LC and expressions deprived of it.
- ▶ LC are introduced by definitional equations where the unknown element is the LC to be defined. Example :

$$\frac{A,B\vdash\Delta}{A\otimes B\vdash\Delta}(\otimes)$$

Definitional Equations

- Defining LC: to be able to find equivalences between expressions containing a LC and expressions deprived of it.
- ▶ LC are introduced by definitional equations where the unknown element is the LC to be defined. Example :

$$\frac{A,B\vdash\Delta}{A\otimes B\vdash\Delta}(\otimes)$$

- But as in algebraic equations, the unknown element is only implicitly defined. The definitional equations? needs to be solved.
- Solving a Definitional Equation : given a couple of Sequent rules.

$$\frac{A, B \vdash \Delta}{A \otimes B \vdash \Delta} (\otimes \text{-Formation}) \frac{A \otimes B \vdash \Delta}{A, B \vdash \Delta} (\otimes \text{-IR})$$

Find Explicit Reflection, the missing sequent rule equivalent to IR.

Solving Definitional Equations

1. Trivialization : Start from a ⊗-identity axiom, and apply IR to it :

$$\frac{A \otimes B \vdash A \otimes B}{A, B \vdash A \otimes B} (\otimes -\mathsf{IR})$$

Solving Definitional Equations

 Trivialization : Start from a ⊗-identity axiom, and apply IR to it :

$$\frac{A \otimes B \vdash A \otimes B}{A, B \vdash A \otimes B} (\otimes -\mathsf{IR})$$

Composition of the axiom of ⊗-reflection with general premises :

$$\frac{\begin{array}{c|c} \Gamma \vdash A & A, B \vdash A \otimes B \\ \hline \Gamma, B \vdash A \otimes B & \Gamma' \vdash B \\ \hline \Gamma, \Gamma' \vdash A \otimes B \end{array}$$

Solving Definitional Equations

 Trivialization : Start from a ⊗-identity axiom, and apply IR to it :

$$\frac{A \otimes B \vdash A \otimes B}{A, B \vdash A \otimes B} (\otimes -\mathsf{IR})$$

Composition of the axiom of ⊗-reflection with general premises :

$$\frac{\Gamma \vdash A \qquad A, B \vdash A \otimes B}{\Gamma, B \vdash A \otimes B} \qquad \Gamma' \vdash B$$

$$\Gamma, \Gamma' \vdash A \otimes B$$

3. We get the following equivalent rules:

$$\frac{A \otimes B \vdash \Gamma}{A, B \vdash \Gamma} (\otimes \text{-IR}) \frac{\Gamma \vdash A \qquad \Gamma' \vdash B}{\Gamma, \Gamma' \vdash A \otimes B} (\otimes \text{-ER})$$

Definitional equations

Parameters

Liberalizing contexts on the Left (L)

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \otimes B \vdash \Delta} (\otimes) \qquad \frac{\Gamma \vdash A \qquad \Gamma' \vdash B}{\Gamma, \Gamma' \vdash A \otimes B} (\otimes -\mathsf{ER})$$

Liberalizing contexts on the Right (R)

$$\frac{A, B \vdash \Delta}{A \otimes B \vdash \Delta} (\otimes) \qquad \frac{\Gamma \vdash \Delta, A \qquad \Gamma' \vdash \Delta' B}{\Gamma, \Gamma' \vdash \Delta, \Delta', A \otimes B} (\otimes -\mathsf{ER})$$

► Weakening (W)

$$\frac{\Gamma, \Gamma' \vdash \Delta}{\Gamma, \Sigma, \Gamma' \vdash \Delta} (wL) \qquad \frac{\Gamma \vdash \Delta, \Delta'}{\Gamma \vdash \Delta, \Sigma, \Delta'} (wR)$$

Contraction (C)

$$\frac{\Gamma, \Sigma, \Sigma, \Gamma' \vdash \Delta}{\Gamma, \Sigma, \Gamma' \vdash \Delta} (cL) \qquad \frac{\Gamma \vdash \Delta, \Sigma, \Sigma, \Delta'}{\Gamma \vdash \Delta, \Sigma, \Delta'} (cR)$$

Unification in a Cube

from Sambin & alii, 2000

where
$$S = W + C$$

Rules and analyticity

Why are the rules for a given LC valid?

ightarrow because their validity is constitutive of the meaning of the LC.

conjunction is nothing but the logical concept which makes the rules for \wedge valid.

Rules and analyticity

Why are the rules for a given LC valid?

ightarrow because their validity is constitutive of the meaning of the LC.

conjunction is nothing but the logical concept which makes the rules for \land valid.

But isn't this too easy? Not any kind of rules successfully define a LC!

A.N. Prior 1960, "The runabout inference-ticket", Analysis

$$\frac{A}{A \text{ Tonk } B} \qquad \frac{A \text{ Tonk } B}{B}$$

Definitional equations and the normativity of logic

Definitional equation for blonk (tonk lil' brother)

$$\frac{\Gamma \vdash A \qquad \Gamma' \vdash B}{\Gamma, \Gamma' \vdash A \text{ blonk } B} \text{ (blonk)}$$

Definitional equations and the normativity of logic

Definitional equation for blonk (tonk lil' brother)

$$\frac{\Gamma \vdash A \qquad \Gamma' \vdash B}{\Gamma, \Gamma' \vdash A \text{ blonk } B} \text{ (blonk)}$$

Just like tonk, blonk makes the system inconsistent (take the axiom A blonk $B \vdash A$ blonk B and apply the rule upwards to get $\vdash B$).

Solving blonk's equation?

$$\frac{A \text{ blonk } B \vdash A \text{ blonk } B}{A \text{ blonk } B \vdash A} \qquad A \vdash \Delta \\
A \text{ blonk } B \vdash \Delta$$
(1)

→ But then it's impossible to recover IR from ER.

 \longrightarrow But then the proof is not done in \mathcal{C} .

Solvable Equations

Definition (solvable equation)

An equation is solvable iff there is an ER rule s.t.

- one can derive ER from IR in C
- one can derive IR from ER in C

Theorem

Solvability implies preservation of cut elimination

Concluding remarks

What is it exactly that makes LC logical?

- the formality of the underlying structural calculus,
- the schematicity of the rules
- the harmony of the rules
- uniqueness

Concluding remarks

What is it exactly that makes LC logical?

- ▶ the formality of the underlying structural calculus,
- the schematicity of the rules
- the harmony of the rules
- uniqueness

How does this relate to semantic criteria?

- Alternative
- Supplement