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Basic ideas :

I meaning as inferential role : what LC mean should be
characterized in terms of inference rules,

I systematic analysis of meaning : the goal is to understand why
we have the LC that we have,

I logical pluralism : there is a core meaning to LC acrosse
different logics,

I the normativity of logic : the foes are not so much non-logical
symbols than spurious logical constants which would render
the system inconsistent.
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Double line rules
Back to sequent rules
A rich set of connectives

Proof theoretic analysis of LC
The analysis differ depending on the favored proof format :

I natural deduction, with introduction and elimination rules,

I sequent calculus, with introduction rules on both sides of the
turnstyle,

I display logic, with structured sequents.

structural analysis of LC within a sequent system :
K. Dos̆en, 1989, “Logical Constants as Punctuation Marks”, NDJFL.

G. Sambin, G. Battitlotti, Cl. Faggian, 2000, “Basic logic : reflection,

symmetry, visibility”, JSL.

Γ,A,B ` ∆
∧

Γ,A ∧ B ` ∆
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The idea
Structural calculus : principles of ‘pure’ deduction which can be
described independently of the constants of the object language.

A structural calculus C is :

1. A structural language L whose vocabulary consists of :
I A set of propositional variables A,B,C , ...
I Two binary punctuation symbol : , and vdash

2. proof rules for sequences of symbols in L.

For example :

Γ, A ` B ∆ ` B
Γ, A, ∆ ` B

should be read :

(((Γ and A) yields B) and (∆ yields B)) yields ((Γ and A and ∆) yields
B)
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Rules of C in Basic Logic

I Identity Axioms

A ` A

I Exchange rules

Γ,A,B ` ∆
Ex L

Γ,B,A ` ∆

Γ ` A,B∆
Ex L

Γ ` B,A∆

I Cut

Γ ` A Γ′ ` ∆
cut L

Γ′(Γ/A) ` ∆
Γ ` ∆′ A ` ∆

cut R
Γ ` ∆′(∆/A)
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Definitional Equations

I Defining LC : to be able to find equivalences between
expressions containing a LC and expressions deprived of it.

I LC are introduced by definitional equations where the
unknown element is the LC to be defined. Example :

A,B ` ∆
(⊗)

A⊗ B ` ∆
I But as in algebraic equations, the unknown element is only

implicitly defined. The definitional equations ? needs to be
solved.

I Solving a Definitional Equation : given a couple of Sequent
rules.

A,B ` ∆
(⊗-Formation)

A⊗ B ` ∆
A⊗ B ` ∆

(⊗-IR)
A,B ` ∆

Find Explicit Reflection, the missing sequent rule equivalent to
IR.
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Solving Definitional Equations

1. Trivialization : Start from a ⊗-identity axiom, and apply IR to
it :

A⊗ B ` A⊗ B
(⊗-IR)

A,B ` A⊗ B

2. Composition of the axiom of ⊗-reflection with general
premises :

Γ ` A A,B ` A⊗ B

Γ,B ` A⊗ B Γ′ ` B

Γ, Γ′ ` A⊗ B
3. We get the following equivalent rules :

A⊗ B ` Γ
(⊗-IR)

A,B ` Γ
Γ ` A Γ′ ` B (⊗-ER)

Γ, Γ′ ` A⊗ B
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Definitional equations

Γ ` A Γ ` B
(&)

Γ ` A&B

A ` ∆ B ` ∆
(⊕)

A⊕ B ` ∆

A,B ` ∆
(⊗)

A⊗ B ` ∆

Γ ` A,B
(&)

Γ ` A` B

Γ `
(⊥)

Γ ` ⊥
` ∆

(1)
1 ` ∆

Γ,A ` B
(→)

Γ ` A→ B

A ` B,∆
(←)

A← B ` ∆
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Parameters

I Liberalizing contexts on the Left (L)

Γ,A,B ` ∆
(⊗)

Γ,A⊗ B ` ∆

Γ ` A Γ′ ` B (⊗-ER)
Γ, Γ′ ` A⊗ B

I Liberalizing contexts on the Right (R)

A,B ` ∆
(⊗)

A⊗ B ` ∆

Γ ` ∆,A Γ′ ` ∆′B
(⊗-ER)

Γ, Γ′ ` ∆,∆′,A⊗ B

I Weakening (W)

Γ, Γ′ ` ∆
(wL)

Γ,Σ, Γ′ ` ∆

Γ ` ∆,∆′
(wR)

Γ ` ∆,Σ,∆′

I Contraction (C)

Γ,Σ,Σ, Γ′ ` ∆
(cL)

Γ,Σ, Γ′ ` ∆

Γ ` ∆,Σ,Σ,∆′
(cR)

Γ ` ∆,Σ,∆′
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Unification in a Cube

from Sambin & alii, 2000

where S = W + C
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Bona fide LCs

Rules and analyticity

Why are the rules for a given LC valid ?
→ because their validity is constitutive of the meaning of the LC.

conjunction is nothing but the logical concept which makes the
rules for ∧ valid.

But isn’t this too easy ? Not any kind of rules successfully define a
LC !
A.N. Prior 1960, “The runabout inference-ticket”, Analysis

A
A Tonk B

A Tonk B
B
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Definitional equations and the normativity of logic

Definitional equation for blonk (tonk lil’ brother)

Γ ` A Γ′ ` B
(blonk)

Γ, Γ′ ` A blonk B

Just like tonk, blonk makes the system inconsistent (take the axiom
A blonk B ` A blonk B and apply the rule upwards to get ` B).
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Solving blonk’s equation ?

A blonk B ` A blonk B
A blonk B ` A A ` ∆

A blonk B ` ∆
(1)

−→ But then it’s impossible to recover IR from ER.

A blonk B ` A blonk B
` B

A blonk B ` B
(2)

−→ But then the proof is not done in C.
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Solvable Equations

Definition (solvable equation)

An equation is solvable iff there is an ER rule s.t.

I one can derive ER from IR in C
I one can derive IR from ER in C

Theorem
Solvability implies preservation of cut elimination

D. Bonnay & D. Westerst̊ahl Class 3: The syntactic road



LC and the structure of reasoning
Unification

Normativity

Tonk
Bona fide LCs

Concluding remarks

What is it exactly that makes LC logical ?

I the formality of the underlying structural calculus,

I the schematicity of the rules

I the harmony of the rules

I uniqueness

How does this relate to semantic criteria ?

I Alternative

I Supplement
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