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76801 Saint-Étienne-du-Rouvray, France

and
LS-CREST

Timbre J340, 3 av. P. Larousse
92241 Malakoff Cedex, France
Ghislaine.Gayraud@univ-rouen.fr
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Abstract

We consider the problem of testing hypotheses on the copula
density from n bi-dimensional observations. We wish to test the null
hypothesis characterized by a parametric class against a composite
nonparametric alternative. The density under the alternative are sep-
arated in the L2-norm from any density lying in the null hypothesis.
The copula densities under consideration are supposed to belong to a
range of Besov balls. According to the minimax approach, the testing
problem is solved in an adaptive framework: it leads to a log term loss
in the minimax rate of testing in comparison with the non-adaptive
case. A smoothness-free test statistic that achieves the minimax rate
is proposed. The lower bound is also proved. The empirical behavior
of the test procedure is also studied with both simulated and real data.

Index Terms — copulas, adaptive testing, composite null hypothesis,
minimax rate of testing

1



1 Introduction

Copulas became a very popular and attractive tool in the recent literature for
modeling multivariate observations. The nice feature of copulas is that they
capture the structure dependence among the components of a multivariate
observation without requiring the study of the univariate margins. More
precisely, Sklar’s Theorem ensures that any d−varied distribution function
H may be expressed as

H(x1, . . . , xd) = C
(
F 1(x1), . . . , F d(xd)

)
,

where the F p’s are the margins and C is called the copula function. Sklar
(1959) states the existence and the uniqueness of C as soon as the random
variables with joint law H are continuous.

Modeling the dependence is a great challenge in statistics, specially in fi-
nance or assurance where (for instance) the identification of the dependence
structure between assets is essential. Many authors proposed parametrical
families of copulas {Cλ, λ ∈ Λ}, each of them being available to capture
different dependence behavior. The elliptic family contains the Gaussian
Copulas and the Student Copula which are often used in finance. For insur-
ance purposes, heavy tails are needed and copulas coming from the archi-
median family are used. Among others, the more common are the Gumbel
Copula, the Clayton Copula or the Frank Copula. In view to illustrate
the different behaviours of the tails of several copula densities, we present
graphs corresponding to the models cited above. The parameters are chosen
such a way that the associated Kendall’s tau (i.e. the indicator of concor-
dance/discordance) is identical in all illustrations.
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Figure 1: Kendall’s tau= 0.25. Left: Bi-dimensional Gaussian copula den-
sity with parameter ρ = 0.4. Right: Bi-dimensional Student copula density
with parameter (ρ, ν) = (0.4, 1).

Since many parametric copula models are now available, the crucial
choice for the practitioner is to identify the model which is well-adapted
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Figure 2: Kendall’s tau= 0.25. Left: Bi-dimensional Frank copula density
with parameter θ = 2.5. Center: Bi-dimensional Gumbel copula density
with parameter θ = 1.33. Right: Bidimensional Clayton copula density
with parameter θ = 0.66.

to his data. Many goodness-of-fit tests are proposed in the literature.
Genest et al. (2008b) give an excellent review and propose a detailed empir-
ical study for different tests: we refer to this paper for any supplementary
references. Roughly speaking, they study procedures based on empirical
processes. Among others, they deal with rank-based versions of the Cramér-
von-Mises and Kolmogorov-Smirnov statistics. They also consider test based
on Kendall’s transform. Basically, they restrict themselves to test statistics
built from empirical distributions (empirical copula or transform of this lat-
ter). On a theoretical point of view, the asymptotic law under the null of
the test statistic is stated in a number of papers (see by instance Deheuvels
(1979), Deheuvels (1981a) and Deheuvels (1981b)). It allows in particular
to derive the critical value but generally the alternative is unspecified and
the properties on the power are empirically given from simulations.

In our paper, it is supposed that the copula C admits a density copula c
with respect to the Lebesgue measure. To our knowledge, Fermanian (2005)
was the first author to propose a goodness-of-fit test based on nonparametric
kernel estimations of the density copula. In the same spirit as the papers
cited above, he derived the asymptotic law of the test statistic under the null.
His results are valid for bandwidths greater than n−2/(8+d) which correspond
to enough smooth copula densities.

In this paper, we focus on the minimax theory framework: we define
the test problem as initiated by Ingster (1982). One of the advantages of
this point of view is to precisely define the alternative: it is then possible
to quantify the risk associated to the test problem as the sum of the first
type error and the second type of error. Since this risk measure provides
a quality criterion, it is possible to compare the test procedures. Indeed,
the alternative H1(vn) is defined from a positive quantity vn measuring
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the distance between the null and the latter. Obviously, the larger is this
separating distance, the easier is the decision. The aim of the minimax
theory is to determine the larger alternative for which the decision remains
feasible. Solving the lower bound problem is equivalent to exhibit the
faster separating rate vn such that the risk is bounded from below by a given
positive constant α: this rate is called the minimax rate of testing. Next,
the upper bound problem has to be solved exhibiting a test procedure
whose risk is bounded from above by a given α, that is, the statistic test
allows to distinguish the null from H1(vn), where vn is the minimax rate.

In the white noise model or in the density model, the goodness-of-
fit problem (stands as explained above) was solved for different regularity
classes (Hölder or Sobolev or Besov) associated with various geometries:
pointwise, quadratic and supremum norm. For fixed smoothness of the un-
known density (minimax context), there is a rich literature summed-up
in Ingster (1993) and in Ingster and Suslina (2002). Optimal test proce-
dures include orthogonal projections, kernel estimates or χ2 procedures.
Goodness-of-fit tests with alternatives of variable smoothness into some
given interval (adaptive context) were introduced by Spokoiny (1996) for
L2 distance in the Gaussian white noise model and generalized by Spokoiny
(1998) to Lp distances. Ingster (2000) proved that a collection of χ2 tests
attains the adaptive rates of goodness-of-fit tests in L2 distance as well as
for the density model.

For sake of simplicity, we restrict ourselves to bi-dimensional data but
there is no theoretical obstacle to generalize our results to higher dimensions.
Suppose that we observe n i.i.d. copies (Xi, Yi)i∈I where I = {1, . . . , n} of
(X, Y ). The random vector (X, Y ) is drawn from the distribution function
H expressed through the copula C. Moreover, it is assumed that C has a
copula density c with respect to the Lebesgue measure on IR2 and F and G
stand for the cdf’s of X and Y respectively. From (Xi, Yi)i∈I , we are inter-
ested in studying the goodness-of-fit problem when the null is a composite
hypothesis H0 : c ∈ C for a general class C of parametrical copula densities.
Since the alternative is defined from the quadratic distance, we propose a
goodness-of-fit test based on wavelet estimation of an integrated functional
of the copula density. Indeed, Genest et al. (2008a) and Autin et al. (2008)
show that the wavelet methods are an efficient tool to estimate the cop-
ula densities since these latter have very specifics behaviors. Unfortunately
no direct observations (F (Xi), G(Yi)) for i ∈ I are available since F and
G are unknown, the test statistic is then built with pseudo-observations
(F̂ (Xi), Ĝ(Yi))i∈I : as usual in the copula context, the quantities of interest
are rank-based statistics. We provide an auto-driven test procedure and we
produce its rate when the alternative contains a regular constraint: since
the procedure is based on wavelet methods, the linked functional classes
are the Besov classes Bs,p,q. We give results for p ≥ 2 (dense case) and
s ≥ 1/2. The case p < 2 is called the sparse case and leads to different
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minimax rates (see Lepskii and Spokoiny (1999)); in this case, another test
strategy must be constructed and it will be explored in a further work. The
constraint s ≥ 1/2 is due to the fact that pseudo-data are used and then a
minimal regularity is required in order to pay no attention to substitute the
direct data with the ranked data. Observe that Kerkyacharian and Picard
(2004) have the same constraint in the univariate regression model when
the design is random with unknown distribution. Next, we prove that our
procedure is minimax (and adaptive) optimal by exhibiting the minimax
adaptive rate. This one looks like the minimax rate but an extra log log
term appears: we prove that this loss is the price to paid for adaptivity. To
our knowledge, the proof of the adaptive lower bound in the multivariate
density model when the null is composite has never been clearly written.

Next, we allocate a large part in this paper to empirical studies. Simu-
lation allows us to show that, when the theoretical framework is respected,
the power qualities of our test procedures are good. We choose to make
simulations starting from the parametrical copula families presented in the
beginning of the introduction and which are the more common for appli-
cations. We compare our simulation results with those of Genest et al.
(2008b). Then, we study a very well known sample of real life data of
Frees and Valdez (1998) consisting of the indemnity payment (LOSS) and
the allocated loss adjustment expense (ALAE) for 1500 general liability
claims. The most popular model for the copula is a Gumbel copula model
with parameter θ = 1.45 (which may be estimated by inverting the Kendall’s
tau) given in Figure 3. Among other results, it is empirically shown that the
Gumbel and the Gaussian copula models are acceptable while Student, Clay-
ton or Frank models are rejected. Figure 3 gives a wavelet estimator of the
copula density of (LOSS, ALEA) by the method explained in Autin et al.
(2008). Visually, fitting the unknown copula with the Gumbel model seems
indeed to be the most appropriated.

The paper is organized as follows. In Section 2, we first provide a gen-
eral description of orthonormal wavelet bases, focusing on the mathematical
properties that are essential to the construction of the statistics we consider.
In Section 3, we provide the inference procedures: first, we explain how to
estimate the square L2-norm of the copula density and next we derive the
procedure of goodness-of-fit. The theoretical part is exposed in Section 4:
first, we state very precisely the test problem under consideration; we define
the criterion allowing to measure the quality of test procedures and define
the separating minimax rate. In Section 5 the main results are stated: our
test procedure is shown to be optimal in the sense defined in the previous
section. Section 6 is devoted to practical results: first, we present an in-
tensive simulation study and next a real-life data is exploited. We conclude
these parts with a discussion in Section 7. The proof of the upper bound
is given in Section 8 while the proof of the lower bound is given in Section
9. Finally, all technical or computational lemmas which are not essential to
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Figure 3: Left: Thresholded wavelet estimator for the copula density of
(LOSS, ALEA) as given in Autin et al. (2008). Center: Gumbel copula
density with parameter θ = 1.45. Right: Gaussien copula density with
parameter ρ = 0.48.

understand the main proofs, are postponed in Appendix.

2 Wavelet Setting

2.1 Wavelet expansion

In the univariate case, let φ be a scaling function and ψ its associated wavelet
function, which are chosen compactly supported on [0, L], L > 0. Let j in
IN, k1 in ZZ and for any univariate function Φ, set Φj,k1(·) = 2j/2Φ(2j ·−k1).
In the sequel, we use wavelet expansions for bivariate functions and we keep
the same notation as for the univariate case. Then, a bivariate wavelet basis
is built as follows:

φj,k(x, y) = φj,k1(x)φj,k2(y), ψ
(1)
j,k (x, y) = φj,k1(x)ψj,k2(y),

ψ
(2)
j,k (x, y) = ψj,k1(x)φj,k2(y), ψ

(3)
j,k (x, y) = ψj,k1(x)ψj,k2(y),

where the subscript k = (k1, k2) indicates the number of components of the
functions φj,k and ψj,k. For a given j ∈ IN, the set

{φj,k, ψ
ε
`,k′ , ` ≥ j, (k, k′) ∈ ZZ2 × ZZ2, ε = 1, 2, 3}

is an orthonormal basis of L2(IR2) and the expansion of any real bivariate
function Φ in L2(IR2) is given by:

Φ(x, y) =
∑

k∈Z2

Aj,kφj,k(x, y) +
∞∑

`=j

∑

k∈ZZ2

∑

ε=1,2,3

Bε
`,kψ

ε
`,k(x, y),
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where the scaling coefficients and the wavelet coefficients are

∀j ∈ IN, ∀k ∈ ZZ2, Aj,k =
∫

IR2
Φφj,k, Bε

j,k =
∫

IR2
Φψε

j,k.

The Parseval equality immediately leads to the expansion of the square L2-
norm of the function Φ:

∫
Φ2 = Tj + Bj , (1)

where the trend and the detail terms are respectively:

Tj =
∑

k∈ZZ2

(Aj,k)
2 and Bj =

∞∑

`=j

∑

k∈ZZ2

3∑

ε=1

(Bε
`,k)

2. (2)

Note that if Φ has a compact support on [a1, b1]× [a2, b2], the sum over the
indices k is finite: there are no more than (2j(b1− a1) + L)(2j(b2− a2) + L)
terms in the sum (recall that L is the length of the support of φ); this is the
case of the functions c under consideration since they are copula densities
whose support is [0, 1]2. In order to simplify the notations, the bounds of
variation of k and ε in expansion of any Φ, are omitted in the sequel.

2.2 Besov Bodies and Besov spaces

Since we deal with wavelet expansions, it is natural to consider Besov bod-
ies as functional spaces because they are characterized in term of wavelet
coefficients as follows.

Definition 1. For any s > 0, p ≥ 1 and any radius M > 0, a function Φ
defined on IRd belongs to the ball bs,p,∞(M) of the Besov body bs,p,∞ if and
only if its sequence of wavelet coefficients Bε

j,k satisfies

∀j ∈ IN,
∑

k∈ZZ2

3∑

ε=1

|Bε
j,k|p < M2−j(s+d/2−d/p)p.

The Besov body bs,p,∞ coincides with the more standard Besov space
Bs,p,∞ when there exists an integer N strictly larger than s and such that
the q−th moment of the wavelet ψ vanishes for any q = 0, . . . , N − 1.
It is possible to build univariate wavelets whose support is included in
[0, 2N − 1] satisfying this property for any choice of N (see the Daubechies
wavelets). An advantage of the Besov spaces Bs,p,∞ is to provide an use-
ful tool to classify wavelet decomposed signals according to their regular-
ity and sparsity properties (see for instance Donoho and Johnstone (1994a),
Donoho and Johnstone (1994b)). Roughly speaking, the regularity increases
with s, whereas the sparsity decreases with p; in particular, the spaces with
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indice p < 2 describe very wide classes of inhomogeneous but sparse func-
tions. In this paper, only the case p ≥ 2 is considered.

In the sequel, we need to bound the detail term Bj defined in (2). We
use the following inequality

∀j ∈ IN, Bj ≤
∞∑

`=j


 ∑

k∈Z2

3∑

ε=1

∣∣Bε
`,k

∣∣p



2/p

(
K 22j

)1−2/p

where K is a positive constant depending on the supports of Φ and ψ.
Assuming that the function Φ belongs to bs,p,∞(M) with s, p and M as in
Definition 1, the following inequality holds

∀j ∈ IN, Bj ≤ K̃ 2−2js, (3)

where K̃ is a positive constant depending on the supports of Φ, ψ and on
the radius M . When Φ is a copula density, K̃ = M2/p

(
3(L + 1)2

)1−2/p.

3 Statistical Procedures

Assuming that the copula density c belongs to L2, we first explain the pro-
cedure to estimate the square L2−norm of c

θ = ‖c‖2 :=
∫

[0,1]2
c2

which is used to define the alternative of the goodness-of-fit test. The statis-
tical methods depend on parameters (the level j for the estimation procedure
and j and the critical value tj for the test procedure) which are discussed
and determined in an optimal way in Section 5.

It is fundamental to note that, for any bivariate function Φ, one has

IEc [Φ(U, V )] = IEh [Φ(F (X), G(Y ))] , (4)

where h stands for the joint density of (X, Y ). This means in particular that
the wavelet coefficients {cj,k, c

ε
`,k, ` ≥ j, k ∈ ZZ2, ε = 1, 2, 3} of the copula

density c on the wavelet basis

{φj,k, ψ
ε
`,k, ` ≥ j, k ∈ ZZ2, ε = 1, 2, 3}

are equal to the coefficients of the joint density h on the warped wavelet
family

{φj,k(F (·), G(·)), ψε
`,k(F (·), G(·)), ` ≥ j, k ∈ ZZ2, ε = 1, 2, 3}.

The statistical procedures are based on the wavelet expansion of the copula
density c, for which the wavelet coefficients have to be estimated.
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3.1 Procedures to estimate θ

Let J be a subset of IN and consider a given j in J . Motivated by the
wavelet expansion (1), we propose to estimate θ with an estimator of the
trend Tj omitting the detail term Bj . Using the orthonormality property of
the wavelet basis, it leads to estimate the square of the coefficients of the
copula density on the scaling function. As usual, a U−statistic associated
to the empirical coefficients is used in order to remove the bias terms. Due
to (4), we first consider the following family of statistics {T̂j , j ∈ J} defined
by

T̂j =
∑

k

θ̂j,k,

where θ̂j,k is the following U−statistic

θ̂j,k =
1

n(n− 1)

n∑

i1,i2=1

i1 6=i2

φj,k (F (Xi1), G(Yi1))φj,k (F (Xi2), G(Yi2)) .

Since no direct observation (F (Xi), G(Yi)) is usually available, it is replaced
in θ̂j,k by the pseudo observation (F̂ (Xi), Ĝ(Yi)), where F̂ , Ĝ denote some es-
timator of the margins. To preserve the independence given by the observa-
tions, we split the initial sample (Xi, Yi)i∈I into disjoint samples (Xi, Yi)i∈I1

and (Xi, Yi)i∈I2 with I2∪I1 = I, I2∩I1 = ∅, and whose size is n1, n2 respec-
tively. The sub-sample with indices in I1 is used to estimate the marginal
distributions and the second one with indices in I2 is devoted to the com-
putation of the U -statistic. We consider the usual empirical distribution
functions:

F̂ (x) =
1
n1

∑

i∈I1

1I{Xi≤x} and Ĝ(y) =
1
n1

∑

i∈I1

1I{Yi≤y}.

It leads to the family {T̃j , j ∈ J} of estimators of θ

T̃j =
∑

k

θ̃j,k,

with

θ̃j,k =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

φj,k

(
Ri1

n1
,
Si1

n1

)
φj,k

(
Ri2

n1
,
Si2

n1

)
,

where Rp = n1F̂ (Xp) and Sp = n1Ĝ(Yp), p ∈ I1, could be viewed as esti-
mates of the rank statistics of Xp and Yp respectively.
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3.2 Test Procedures

In this part, we consider a family of known bivariate copula densities CΛ =
{cλ, λ ∈ Λ} indexed by a parameter λ varying in a given set Λ ⊂ IRdΛ ,
dΛ ∈ IN∗. From the observations (Xi, Yi)i∈I , our aim is to test the goodness-
of-fit between any cλ and a copula density c, which is enough distant in the
L2-norm, from the parametric family CΛ. Acting as in paragraph 3.1, we
estimate the square L2-norm between c and a fixed element cλ lying in the
family CΛ by

T̃j(λ) =
∑

k

θ̃j,k(λ), (5)

where

θ̃j,k(λ) =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(
φj,k

(
Ri1

n1
,
Si1

n1

)
− cj,k(λ)

)

×
(

φj,k

(
Ri2

n1
,
Si2

n1

)
− cj,k(λ)

)
,

where {cj,k(λ), k ∈ ZZ2, j ∈ IN} denote the known scaling coefficients of the
target copula density cλ. Notice that, if the direct observations (F (Xi), G(Yi))i∈I
would be available, the appropriate test statistic T̂j(λ) would be

T̂j(λ) =
∑

k

θ̂j,k(λ),

where

θ̂j,k(λ) =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(φj,k (F (Xi1), G(Yi1))− cj,k(λ))

× (φj,k (F (Xi2), G(Yi2))− cj,k(λ)) .

Now we are ready to build the test procedures. Let us give a set of indices
J and a set of critical values {tj , j ∈ J} and define {DΛ

j , j ∈ J}, the family
of test statistics

DΛ
j = 1I

inf
λ∈Λ

T̃j(λ) > tj
,

allowing to test if c belongs to the parametric family CΛ = {cλ, λ ∈ Λ}. Note
that Λ = {λ0} leads to the single null hypothesis H0 : c = cλ0 . We are also
interested in building auto-driven procedures by considering all the tests in
the family

DΛ = max
j∈J

DΛ
j = 1I

max
j∈J

( inf
λ∈Λ

T̃j(λ)− tj) > 0
. (6)
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The sequence of parameters tj of the method are determined in an optimal
way in Section 5. We explain in Section 4 what “optimal way” means in
giving a presentation of the minimax theory for our framework.

4 Minimax Theory

We adopt the minimax point of view to solve the problem of hypothesis test-
ing, initiated by Ingster (1982) in Gaussian white noise. A review of results
obtained in problems of minimax hypothesis testing is available in Ingster
(1993) and Ingster and Suslina (2002). Let us describe this approach.

4.1 Minimax hypothesis testing Problem

As in the previous section, we consider CΛ = {cλ, λ ∈ Λ} a given functional
class of copula densities. For any given τ = (s, p,M), with s > 0, p ≥ 1,M >
0, the following statistical problem of hypothesis testing is considered,

H0 : c = cλ ∈ CΛ against H1 : c ∈ Γ(vn(τ)), (7)

with

Γ(vn(τ)) = bs,p,∞(M) ∩
{

c : inf
cλ∈CΛ

‖c− cλ‖ ≥ vn(τ)
}

,

where bs,p,∞(M) is the ball of radius M of the Besov Body bs,p,∞ defined
in Definition 1 and vn(τ) is a sequence of positive numbers, depending on
τ and decreasing to zero as n goes to infinity. Recall that ‖g‖ denotes the
L2-norm of any function g in L2(IR2). Observe that the functional class
Γ(vn(τ)), which determines the alternative H1, is characterized by three
parameters: the regularity class bs,p,∞ where the copula density is supposed
to belong, the L2-norm which is the geometrical tool measuring the distance
between both hypotheses, and the sequence vn(τ).

According to the principle of the minimaxity, the regularity space and
the loss function are chosen by the statistician. Notice that the parame-
ter τ could be known or unknown. Obviously, our aim is to consider tests
which are able to detect alternatives defined with sequences vn(τ) as small
as possible. It can be shown (Ingster (1993)) that vn(τ) cannot be chosen
in an arbitrary way: indeed, if vn(τ) is too small, then H0 and H1 cannot
be distinguished with a given error α ∈ (0, 1). Therefore, solving hypothe-
sis testing problems via the minimax approach consists in determining the
smallest sequence vn(τ) for which such a test is still possible and to indicate
the corresponding test functions. The smallest sequence vn(τ) is called the
minimax rate of testing. Let us denote Dn a test statistic that is an arbitrary
function with possible values 0, 1, measurable with respect to (Xi, Yi)i∈I and
such that we accept H0 if Dn = 0 and we reject it if Dn = 1.

11



Definition 2. Assuming τ to be known, the sequence vn(τ) is the minimax
rate of testing H0 versus H1 if the relations (8) and (9) are fulfilled:

• for any given α1 ∈ (0, 1), there exists a > 0 such that

lim
n→+∞ inf

Dn

(
sup

cλ∈CΛ
IPλ(Dn = 1) + sup

c∈Γ(a vn(τ))
IPc(Dn = 0)

)
≥ α1,(8)

where the infimum is taken over any test statistic Dn,

• there exists a sequence of test statistics (D?
n)n for which for any given

α2 in (0, 1), it exists A > 0 such that

lim
n→+∞

(
sup

cλ∈CΛ
IPλ(D?

n = 1) + sup
c∈Γ(A vn(τ))

IPc(D?
n = 0)

)
≤ α2,(9)

where IPc, respectively IPλ denotes the distribution function associated with
the copula density c, respectively cλ.

4.2 Adaptation

Nevertheless, since the copula function itself is unknown, the a priori knowl-
edge on τ could appear unrealistic. Therefore, the purpose of this paper is to
solve the previous problem of test in an adaptive framework i.e. in suppos-
ing that τ = (s, p,M) is unknown but varying in a known set S. Comparing
the adaptive case with the non-adaptive case, it has been proved in differ-
ent frameworks that a loss of efficiency in the rate of testing is unavoidable
(see for instance Spokoiny (1996), Gayraud and Pouet (2005)). This loss is
expressed as tn, a positive constant or a sequence of positive numbers in-
creasing to infinity with n (as slow as possible), which appears in vnt−1

n
(τ),

the rate of testing. Similarly to the minimax rate of testing, we define the
adaptive minimax rate of testing as follows

Definition 3. The sequence vnt−1
n

(τ) is the adaptive minimax rate of testing
if the relations (10) and (11) are satisfied

• for any given α1 ∈ (0, 1), there exists a > 0 such that

lim
n→+∞ inf

Dn


 sup

cλ∈CΛ
IPλ(Dn = 1) + sup

τ∈S
sup

c∈Γ(a v
nt−1

n
(τ))

IPc(Dn = 0)


 ≥ α1,(10)

where the infimum is taken over any test statistic Dn,

• there exists a sequence of universal test statistics D?
n (free of τ) such

that, for any given α2 in (0, 1), there exists A > 0 such that

lim
n→+∞


 sup

cλ∈CΛ
IPλ(D?

n = 1) + sup
τ∈S

sup
c∈Γ(A v

nt−1
n

(τ))
IPc(D?

n = 0)


 ≤ α2(11)
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where tn is either a positive constant or a sequence of positive numbers
increasing to infinity with n as slow as possible.

Note that relations (10) and (11) (instead of relations (8) and (9)) mean
that the minimax rate of testing vn(τ) is contaminated by the term tn in
the adaptive setting. Observe that the same phenomenon is observed in the
estimation problem where an extra logarithm term tn = log(n) has often
(but not always) to be paid for the adaptation.

5 Main results

In this section, we focus on test problems for which the parametric family
CΛ is included in some bsΛ,pΛ,∞(MΛ) where sΛ > 0, pΛ ≥ 1 and MΛ > 0 are
known.

Our theoretical results concern the minimax resolution of the problem
of hypothesis testing defined in (7) in an adaptive framework. Theorem 2
states the result of the lower bound (see Relation (10)). Then Theorem 3
exhibits the rate achieved by the test procedure proposed in Section 3 (see
Relation (11)). Comparing the rate of our procedure with the fastest rate
given in Theorem 2 leads to the following result:

Theorem 1. Let us set

S = {τ = (s, p, M), s ≥ 1/2, p ≥ 2, M > 0 : s− 2/p ≤ sΛ − 2/pΛ, MΛ ≤ M}.(12)

Under the assumptions of Theorem 2 and Theorem 3, our test procedure
defined by Relation (6) is adaptive optimal over the range of parameters
τ ∈ S.

5.1 Lower Bound

Let us first state our assumptions.

• AInf1: there exists a parameter λ0 in Λ such that

∀(u, v) ∈ [0, 1]2, cλ0(u, v) > m, for m > 0.

• AInf2: card(Λ) = o
(
exp

(
n1/(4smax+2)

))
, where smax ≥ 1/2 appears

in Theorem 2.

As it is usual for composite null hypotheses, the result of the lower bound
requires the existence of a particular density cλ0 ∈ CΛ (Assumption AInf1)
in order to construct the randomized class of functions which must be in-
cluded in the alternatives. Moreover, a control of the complexity of CΛ is
needed (Assumption AInf2).

13



Theorem 2. Suppose that S defined in (12) is nontrivial (see Spokoiny
(1996)), which means that there exist p ≥ 2, M > 0 and 0 < smin < smax
such that

∀s ∈ [smin, smax], (s, p,M) ∈ S
and assume that AInf1 and AInf2 hold. Set

vnt−1
n

(τ) = (nt−1
n )−2s/(4s+2) with tn =

√
log(log(n)).

Then, it exists a positive constant a such that

lim
n→+∞


inf

Dn

{sup
λ∈Λ

IPλ(Dn = 1) + sup
τ∈S

sup
c∈Γ(a v

nt−1
n

(τ))
IPc(Dn = 0)}


 = 1,(13)

where the infimum is taken over any test function Dn.

5.2 Upper Bound

Theorem 3 deals with Relation (11) which holds for the test statistic DΛ

defined by Relation (6) as soon as the parameters of the methods are chosen
as follows. The set J = {bj0c, . . . , bj∞c} is determined by

2j0 = log(n2) log(n1), 2j∞ =
(

n2

log(n2)

)1/2

∧
(

n1

log(n1)

)1/2−1/2q

,(14)

where q is the order of differentiability of the scaling function φ. The critical
values satisfy

∀j ∈ J, tj = 3µ
2j

n2

√
log log(n2), (15)

where µ is a positive constant such that µ >
√

2KgK1, and Kg and K1

are positive constants depending on ‖φ‖∞, ‖c‖∞, ‖cλ‖∞ and the length of
support of φ (see Lemma 3).

• ASup:

card(Λ) = o
(
exp( n2 log(n2) log log(n2))1/4

)
.

Theorem 3. Let us choose n1 = π n and n2 = (1 − π)n for some π in
(0, 1). Assume that the scaling function φ is continuously q−differentiable
for

q ≥

1−

log
(

n2
log(n2)

)

log
(

n1
log(n1)

)


−1

.
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Moreover assume that any density c under the alternatives or any cλ under
the null are uniformly bounded. Then, the test statistic DΛ defined by (6) is
such that

lim
n1∧n2→+∞ sup

cλ∈CΛ
IPλ(DΛ = 1) = 0. (16)

Assume that ASup holds, then there exists a positive constant A such that

lim
n1∧n2→+∞ sup

τ∈S
sup

c∈Γ(Av
nt−1

n
(τ))

IPc(DΛ = 0) = 0, (17)

where
vnt−1

n
(τ) = (n2t

−1
n2

)−2s/(4s+2) and tn2 =
√

log(log(n2)).

Relation (11) of the upper bound holds since both relations (16) and (17)
are satisfied. Note also that Relation (16) indicates that the test statistic
DΛ is asymptotically of any level in (0, 1).

6 Practical results

The purpose of this section is to provide several examples to investigate the
performances of the test procedure presented in Section 3. This part is not
an illustration of the theoretical part. Instead of focussing on the separating
rate between the alternative and the null hypothesis, our aim is to study
the test procedure from a risk point of view. In the first part, we fix the
test level α = 5% and we study the empirical power function. In the second
part, we present an application to some economical series.

6.1 Methodology

Contrary to the estimation problem, a smooth wavelet is not needed. The
test statistic is then computed with the Haar wavelet since it has a small
support and then it leads to a fast computation time. The critical value of
the test is determined with bootstrap methods: the standard deviation of the
test statistic is computed thanks to Nboot = 20 resampling. The size of the
simulated samples is n = 1024 which is very reasonable for bi-dimensional
problems in an asymptotic context. For the real life data example, the
number of data is around n = 4000. We do not split the sample of data as
it is indicated in the theoretical part. For the simulation part, the empirical
level of the test is derived from NMC = 50 replications for each test problem.

6.2 Simulations

We consider the usual parametrical families mentioned in Introduction. We
focus on tests with a single density copula cλ0 under the null hypothesis.
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6.2.1 Goodness-of-fit when the data are issue from the paramet-
ric family

We first sample data drawn from densities cλ lying in the same parametric
family at which cλ0 belongs. Table 2 and Table 3 give the empirical power
function for two different dependence structures characterized by a different
Kendall’s tau value. Some comments on the tables are in order below.

Our procedure is empirically very conservative as it is the case in the
theoretical part (see Relation (16)): α̂ is equal to zero provided that λ is
sufficiently closed to λ0. On a practical point of view, the estimation of
the variance of the test statistic is not made accurately since a small Nboot

is used in order to produce a tractable procedure. This implies that the
critical value is not very sharp. When λ0 and λ are enough closed and from
a H0-point of view the good issue is that H1 is never chosen if H0 is true
whereas on a H1-point of view, it is difficult to distinguish H0 from H1. It
implies that our procedure doesn’t guarantee to distinguish favorably c and
cλ0 even if the Euclidean distance between λ and λ0 seems large enough.
It is mainly due to the nonparametric side of our test statistic, which is
applied for the simulations to a problem of test whose setting is obviously
parametric. Moreover, it is secondly due to our grid choice of λ: we don’t
know the impact of the distance between two consecutive λ in the grid on the
L2-norm of the two corresponding cλ. And obviously this relation depends
on the parametric class of copulas. In particular the grid for the Frank family
is not well-chosen. To reduce scale problems, the Kendall’s tau seems to be
a better indicator of the distance between the copula densities cλ and cλ0

since they produce confidence intervals of accepted fits more accurate.

The power is improved with a big dependence structure i.e. with a large
Kendall’s tau in absolute value. For example, observe that the empirical
power when τ0 = τ ± 0.1 is at least 20%. It is interesting to note that
the empirical power function is not a symmetric function of τ0 with respect
to τ : it is better when τ < τ0. A possible explanation is that theoretical
properties of our procedure are good as soon as the unknown copula density
is sufficiently smooth. The smaller is τ , the smoother is the density.

The case of data issued from a Clayton with large parameter (e.g. λ = 6
which corresponds to τ = 0.75) does not appear in the tables. Actually, our
procedure fails: we never accept H0 even if cλ0 = cλ. We think that this
kind of copula density is not concerned with the theoretical part since it is
very sparse (almost all the wavelet coefficients are zeros whereas a few ones
are large). In other words, it does not belong to a dense Besov space Bs,p,∞
with p ≥ 2. Moreover, this copula density is not bounded. We emphasize
that our procedure can not be apply when the data are issued from a sparse
copula density but there is no difficulty to test a sparse or unbounded fit
cλ0 .
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6.2.2 Goodness-of-fit for copula densities with similar Kendall’s
tau

Table 4 gives the empirical power level when the sample data is drawn from
densities cλ which do not belong the same family as cλ0 does, but they have
a similar Kendall’s tau. Obviously, it is a more difficult case for the test
procedure: the power is improved with a Kendall’s tau associated with cλ0

which is different from the Kendall’s tau associated with the density sample.
In order to compare our procedure with existing procedures, we choose the
test based on rank-based versions of the familiar Cramér-von Mises statistics
(see Genest et al. (2006)). In Genest et al. (2008b), an intensive empirical
study is presented for a very different experimental design. Since we are
concerning with asymptotic methods and minimax theory, we need enough
data: here n = 1024 while in Genest et al. (2008b) n = 150. The aim of
the latter paper is to study the accuracy of the goodness-of-fit tests with
respect to a prescribed level. Therefore, they need to have a very good
estimation of the variance of the test statistic. Then, they take Nboot = 1000
(while here Nboot = 20) in view to have a sharp critical value. In the same
idea, they choose NMC = 10000 to make the empirical probability very
accurate. For our simulation, we take only Nboot = 50. Notice that the
results by Genest et al. (2008b) required the nearly exclusive use of 140
CPUs over a one-month period while our aim is to provide fast and simple
tests. Obviously, the results from Genest et al. (2008b) should be better
than ours. Nevertheless, we give into the brackets in Table 4 their results.
Several points are apparent from Table 4.

As previously (Table 2 and Table 3 ), our test is always degenerated: we
always accept H0 while the procedure of Genest et al. Genest et al. (2008b)
produces an excellent estimation of the prescribed level α.

As it is mentioned in the previous part, our procedure fails when the
data are issued from a Clayton copula density with a large Kendall’s tau.
But when τ = 0.25, the procedure is excellent: as usual, the test admits
α̂ = 0 for empirical estimation of the first kind error. Moreover, when cλ0 is
Gumbel or Student, the empirical power is better than whose obtained by
Genest et al. (for instance α̂ = 0.86 instead of α̂ = 0.27).

For small level of dependence (τ = 0.25) our procedure is very compet-
itive. For instance, when the fit cλ0 is a Student(4), our procedure always
produce a better power than the power given by the CvM test.

6.3 Real data

We present now an application to real data of our test procedure. The level
of each test (with simple null hypothesis or multivariate null hypothesis) is
α = 5%. To obtain the empirical level, N = 50 replications of our procedure
computed with the half of the available data (chosen randomly) is used.
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Table 1 gives the empirical probability to reject the null hypothesis and the
final decision. ”Yes” means that we accept that the structure of dependence
belongs to the considered family and ”No” that we reject the fitting.

We consider the data of Frees and Valdez (1998), which were also an-
alyzed by Genest et al. (1998), Klugman and Parsa (1999), Chen and Fan
(2005) and Genest et al. (2006), among others. The data consist of the in-
demnity payment (LOSS) and the allocated loss adjustment expense (ALAE)
for 1466 general liability claims. The various authors who analyzed this data
set concluded that the Gumbel copula provides an adequate representation
of the underlying dependence structure. The Gumbel parametric family of
extreme-value copulas captures the fact that almost all large indemnity pay-
ments generate important adjustment expenses (e.g., investigation and legal
costs) while the effort invested in the treatment of a small claim is more
variable. Accordingly, the copula exhibits positive but asymmetric depen-
dence. Confirming this result, the adaptive method of estimation proposed
by Autin et al. (2008) provides a benchmark (see Figure 3) for the copula
density associated to the data.

We consider the following test problems:

H0 : c ∈ CΛ

where the parametrical family CΛ is described in Table 1. Since the Kendall’s
tau computed with the sample is τ = 0.31, we choose an adapted grid of
parameters for each parametrical family of copula densities. Next, assuming
that the density copula of the data belongs to a fixed parametric family, we
estimate the parameter λ

• with λ̂ in inverting the Kendall’s tau (third part of Table 1 where
H0 : c = c

λ̂
).

• with λ̃ in minimizing the average square error (ASE) computed thanks
to the benchmark given in Figure 3 (fourth part of Table 1 where
H0 : c = c

λ̃
). For information, we give the relative ASE computed

with c
λ̃

into brackets.

7 Discussion

The paper is mainly devoted to construct an optimal procedure for solving
a general nonparametric problem of test: both hypotheses are composite,
very general parametric family could be considered under the null. Our pro-
cedure is proved asymptotically to be adaptive minimax and the minimax
separating rate is exhibited over a range of Besov balls. Thanks to simula-
tions and an application to real data, our procedure seems to be competitive
on the power point of view even if the setting of test under consideration is
clearly parametric. The copula model requires much more regularity (than
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the usual density model) since the approximation due to the rank-based
statistics needs to be accurate enough.

Another very interesting point is that we focus in this paper on copu-
las densities belonging to dense Besov spaces (i.e. defined with param-
eters p larger than 2). Nevertheless, it seems that several copula densi-
ties among those exhibiting strong dependence structure belongs to sparse
Besov spaces (i.e. defined with parameters p smaller than 2). Indeed, in
the simulation part, we emphasize that our procedure fails when the Clayton
copula with large parameters is concerned. In the white noise model and for
testing the existence of the signal, Lepskii and Spokoiny (1999) prove that
the minimax separating rate is not vn and that it is possible to built adaptive
minimax (non linear) procedures. The set of the copulas densities contains
great examples of sparse functions and we will explore new procedures in a
further work.

A very close problem is the sample comparison test (problem with two
samples). It could be interesting to test if the structure of dependence
between a couple of variables V1 = (X,Y ) is the same as the structure of an
other couple V2 = (Z, T ). Here the problem of test becomes the following

H0 : cV1 = cV2 against H1 : (cV1 , cV2) ∈ Γ(vn(τ)),

with

Γ(vn) = {cV1 ∈ bs1,p1,∞(M1)} ∩ {cV2 ∈ bs2,p2,∞(M2)}
∩ {(cV1 , cV2) : ‖cV1 − cV2‖ ≥ vn.}

where vn is the separating rate of both hypotheses. In an analogous way
with the test statistic used in this paper, the rule for the comparison test is

D = 1I
max
j∈J

(
∑

k

θ̃j,k − tj) > 0

where

θ̃j,k =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(
φj,k

(
RX

i1

n1
,
RY

i1

n1

)
− φj,k

(
RZ

i1

n1
,
RT

i1

n1

))

×
(

φj,k

(
RX

i2

n1
,
RY

i2

n1

)
− φj,k

(
RZ

i2

n1
,
RT

i2

n1

))
.

RX , RY , RZ , RT are the rank statistics associated to X, Y, Z, T . Using the
same tools as in Butucea and Tribouley (2006) where the homogeneity in
law of the both samples is studied, it is possible to prove that this test is
adaptive optimal and that the minimax separating rate is

vn =

(
n√

log(log(n2))

)−2(s1∧s2)/(4(s1∧s2)+2)

.
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Obviously, all these tests procedures could be used in the multivariate frame-
work but as usual in the nonparametric context, the rates of testing become
rapidly slow implying poor powers.

8 Proof of Theorem 3

Racall that for any given λ ∈ Λ, IPλ (respectively IPc) denote the distribution
associated with density cλ, respectively c. In the same spirit, denote also
IEλ and Varλ (respectively IEc and Varc) the expectation and the variance
with respect to IPλ, respectively to IPc. When no index appears in IE or in
IP it means that the underlying distribution is either IPc or IPλ.

8.1 Expansion of the statistics of interest

Fix a level j in J . For the test problem, the statistic of interest T̃j(λ) (for
λ ∈ Λ) is defined in (5) and is an estimator of

Tj(λ) =
∑

k

θj,k(λ) =
∑

k

(cj,k − cj,k(λ))2 ,

which is the quantity that we need to detect under the alternative. It would
be useful to expand the statistic T̃j(λ) as follows

T̃j(λ) = 2T ¦j (λ) + Tj
♥ + T♠j + 2T♣j (λ) + Tj(λ) (18)

= 2
∑

k

θ¦j,k(λ) +
∑

k

θ♥j,k +
∑

k

θ♠j,k + 2
∑

k

θ♣j,k(λ) +
∑

k

θj,k(λ)

where

θ♥j,k =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(φj,k(F (Xi1), G(Yi1))− cj,k)

×(φj,k (F (Xi2), G(Yi2))− cj,k)

θ♠j,k =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(
φj,k

(
Ri1

n1
,
Si1

n1

)
− φj,k (F (Xi1), G(Yi1))

)

×
(

φj,k

(
Ri2

n1
,
Si2

n1

)
− φj,k (F (Xi2), G(Yi2))

)

θ♣j,k(λ) =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(
φj,k

(
Ri1

n1
,
Si1

n1

)
− φj,k (F (Xi1), G(Yi1))

)

× (φj,k (F (Xi2), G(Yi2))− cj,k(λ))

θ¦j,k(λ) =
1
n2

∑

i1∈I2

(φj,k(F (Xi1), G(Yi1))− cj,k) (cj,k − cj,k(λ)).
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The sequence {cj,k}j,k denotes the unknown scaling coefficients of the un-
known copula density c. Recall that

T̂j(λ) =
∑

k

θ̂j,k(λ)

with

θ̂j,k(λ) =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

(φj,k(F (Xi1), G(Yi1))− cj,k(λ))

× (φj,k(F (Xi2), G(Yi2))− cj,k(λ)) .

The following lemma gives some evaluation for the first moments of each
statistic of interest.

Lemma 1. Let q be a positive integer and assume that φ is continuously
q−differentiable. Let j be a level smaller than j∞ defined in (14). Then, it
exists some positive constant κ which may depend on φ, ‖c‖∞, ‖cλ‖∞ and
M such that

IET̂j(λ) = Tj(λ) and VarT̂j(λ) ≤ κ

((
2j

n2

)2

+
(

2j

n2

)
Tj(λ)

)

IE|T♠j | ≤ κ
log(n1)

n1

IEc|T♣j (λ)| ≤ κ

(
log(n1)

n1
Tj(λ)

)1/2

and IEλ(T♣j (λ))2 ≤ κ 2j

(
log(n1)
n2n1

)
.

Using the Bernstein Inequality, we establish the following bound for the
deviation of the statistic T ¦j (λ) under the alternative. The proof is postponed
to Appendix B.

Lemma 2. For any level j, for all x > 0

IPc

( |T ¦j (λ)| ≥ x
) ≤ exp

(
−K(

n2
2x

2

22jTj(λ) + n2x2jTj(λ)1/2
)
)

where K is a positive constant depending on L, ‖φ‖∞ and ‖c‖∞.

Using a result from Giné et al. (2000), we establish the following bound
for the deviation of the U -statistics T̂j(λ) and T♥j . The proof is postponed
to Appendix C.

Lemma 3. For any level j, as soon as x ≥ 2j n−1
2

√
log(log(n2)), for all

µ > 0,

IPλ

(
|T̂j(λ)| > µx

)
+ IPc

(
|T♥j | > µx

)
≤ Kg(log(n2))−δ
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for any positive δ ≤ µ2(KgK1)−1, where Kg is an universal positive con-
stant given in Giné et al. (2000) and K1 is a positive constant depending on
L, ‖φ‖∞ and either ‖cλ‖∞ or ‖c‖∞ depending on the underlying distribution
i.e. either IPλ or IPc.

8.2 Proof of Relation (16) (First type error)

Let us fix λ ∈ Λ and set

pλ = IPλ

(
max
j∈J

[
inf

λ′∈Λ
T̃j(λ′)− tj

]
> 0

)
.

Notice that under the null

T ¦j (λ) = Tj(λ) = 0 and Tj
♥ = T̂j(λ).

Using the expansion (18), we get

pλ ≤
∑

j∈J

IPλ

(
inf

λ′∈Λ
T̃j(λ′) > tj

)

≤
∑

j∈J

IPλ

(
T̃j(λ) > tj

)

≤
∑

j∈J

{
IPλ

(
|T̂j(λ)| > tj

3

)
+ IPλ

(
|T♠j | >

tj
3

)
+ IPλ

(
|T♣j (λ)| > tj

3

)}

Due to Lemma 1 and using Markov Inequality, we obtain

pλ ≤
∑

j∈J

IPλ

(
|T̂j(λ)| > tj

3

)
+

∑

j∈J

{
IEλ|T♠j |
(tj/3)

+
IEλ(T♣j (λ))2

(tj/3)2

}

≤
∑

j∈J

IPλ

(
|T̂j(λ)| > tj

3

)

+K
∑

j∈J

{
(tj/3)−1 log(n1)

n1
+ (tj/3)−2

(
2j log(n1)

n1n2

)}
.

Note that T̂j(λ) is centered under IPλ, then applying Lemma 3, where tj
is tj = 3µ 2j n−1

2

√
log(log(n2)), the constant µ is defined in (15) and since

card(J) ≤ log(n2), one obtains

pλ ≤ Kgcard(J) (log(n2))−δ + Kcard(J)2−j0

(
n2 log(n1)

n1

√
log log(n2)

)

+Kcard(J)2−j0

(
log(n1)n2

2

n2n1

√
log log(n2)

)

≤ Kg(log(n2))1−δ + K2−j0

(
log(n1) log(n2)√

log log(n2)

)
,
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where the last inequality holds since δ satisfies δ ≤ µ2(2KgK1)−1 (see
Lemma 3). Since µ is such that µ >

√
2KgK1, relation (16) is proved if

one takes δ = µ2(2KgK1)−1.

8.3 Proof of Relation (17) (Second type error)

Let us fix τ ∈ S and c ∈ Γ(Avnt−1
n

(τ)) and set

pc = IPc

(
max
j∈J

inf
λ∈Λ

T̃j(λ)− tj ≤ 0
)

.

Using the expansion (18), we get, for any j? ∈ J

pc ≤ IPc

(
inf
λ

{
2T ¦j?(λ) + Tj(λ) + T♥j? + T♠j? + 2T♣j?(λ)

}
≤ tj?

)

≤ IPc

(
inf
λ

{
2T ¦j?(λ) + Tj(λ)

} ≤ 2tj?

)

+IPc

(
T♥j? + T♠j? + 2 inf

λ

{
T♣j?(λ)

}
≥ tj?

)

≤ IPc

(
inf
λ

{
2T ¦j?(λ) + Tj(λ)

} ≤ 2tj?

)
+ IPc

(
T♥j? ≥ tj?/3

)

+IPc

(
T♠j? ≥ tj?/3

)
+ IPc

(
inf
λ

{
T♣j?(λ)

}
≥ tj?/6

)

= pc1(j?) + pc2(j?) + pc3(j?) + pc4(j?). (19)

Let us explain how j? is chosen. From the wavelet expansion (1) and Lemma
1, one has

IEcT̂j?(λ) = Tj?(λ) =
∫

(c− cλ)2 −Bj?(λ),

where Tj? , Bj? are defined in (2) and t?j is the critical value given in (15).
Since c is in Γ(Avnt−1

n
(τ)) and cλ lies in bsΛ,pΛ,∞(MΛ) ⊂ bs,p,∞(M), the

function (c− cλ) is in bs,p,∞(M). We can choose j? such that

2j?
=

(
K

3µ

n2√
log log(n2)

)1/(2s+1)

,

which is possible due to our choice of j∞ and because s ≥ 1/2. It implies
that Bj? ≤ tj? since Bj? ≤ K̃2−2j?s (see Inequality (3)). Next, since c ∈
Γ(Avnt−1

n
(τ)), one has

∫
(c − cλ′)2 ≥ A2(vnt−1

n
(τ))2 for all λ′ ∈ Λ. Focusing

on rates vnt−1
n

(s) combined with positive constant A which satisfy 4tj? ≤
(Avnt−1

n
(s))2, one obtains

tj?

IEcT̂j?(λ)
=

tj?

Tj?(λ)
≤ 1/3, (20)
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Coming back to the evaluation of the probability terms. First, by (20) and
applying Lemma 2, we get

pc1(j?) ≤
∑

λ∈Λ

IPc

(
2T ¦j?(λ) + Tj?(λ) ≤ 2tj?

)

≤
∑

λ∈Λ

IPc

(
T ¦j?(λ) ≤ −Tj?(λ)/6

)

≤
∑

λ∈Λ

exp
[
−K

(( n2

2j?

)2
Tj?(λ) ∧ n2

2j? Tj?(λ)1/2

)]

≤
∑

λ∈Λ

exp
[
−K

(( n2

2j?

)2
tj? ∧ n2

2j? t
1/2
j?

)]

≤
∑

λ∈Λ

exp
[
−K

(
n22−j∞

√
log log(n2)

)1/2
]

(21)

which is tending to zero as soon as card(Λ) = o
(
exp [ n2 log(n2) log log(n2)]

1/4
)

which is ensured by assumption ASup.

Now, it remains to verify that pc2(j?), pc3(j?) and pc4(j?) are going to
zero as n1 ∧ n2 goes to infinity. Using again the bound (20), Lemma 3 for
some positive δ, Lemma 1 and the definition of the critical value (15), one
gets

pc2(j?) + pc3(j?) + pc4(j?)

≤ IPc

(
T♥j? ≥ tj?/3

)
+ +IPc

(
T♠j? ≥ tj?/3

)
+ card(Λ) IPc

(
T♣j?(λ) ≥ tj?/6

)

≤ Kg(log(n2))−δ + 3
IEc|T♣j?(λ)|2

t2j?

+ card(Λ) 6
IEc|T♠j? |

tj?

≤ Kg(log(n2))−δ + 3κ
2j?

log(n1)
n1n2 t2j?

+ card(Λ) 6κ
log(n1)
n1 tj?

≤ Kg(log(n2))−δ + 6κ card(Λ)

(
2−j? n2

n1

log(n1)√
log log(n2)

)
, (22)

which tends to zero with our choice of j? as soon as card(Λ) = o(n1/(2s+1)
2 )

and where κ is the positive constant appearing in Lemma 1. Inequalities
(21) and (22) entail that the right hand side of (19) is less than any α ∈ (0, 1)
as n is large enough. To finish the proof, observe that the choice of vnt−1

n
(s)

is driven by the fact that it corresponds to the smallest sequence such that
4t?j ≤ (Avnt−1

n
(s))2, which leads to

vnt−1
n

(s) ≥
(

2j?
µ

√
log(log n2)

n2

)1/2

≥
(

n2√
log log(n2)

)2s/(4s+2)

.
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9 Proof of Theorem 2

Without loss of generality, we suppose that the support of the scaling func-
tion φ and its associated wavelet function ψ is [0, 1]. Moreover assume that∫ 1
0 ψε = 0. Let us give some a > 0 which must be small enough.

9.1 Discretisation of S
For any given τ = (s, p,M) ∈ S, denote the level j(τ) by

2j(τ) = (nt−1
n )2/(4s+2)

and define sj the solution of the equation j = j(sj , p, M) for any resolution
level j ∈ J̃ = {jsmax , . . . , jsmin} ⊂ {j0, . . . , j∞} with

jsmax = bj(smax, p,M)c and jsmin = bj(smin, p, M)c.

Consider now the set Sn = {τj = (sj , p,M), j ∈ J̃} which appears as a
discretisation version of a subset of S whose cardinality is of order O(log(n)).

9.2 Prior and parametric family included in the alternatives

For any sj ∈ Sn, define a prior πj which is concentrated on the class of the
random functions

cj(u, v) = cλ0(u, v) +
∑

k

3∑

ε=1

δkuj(n)ψε
j,k(u, v),

where cλ0 is defined in assumption AInf1 and

P (δk = 1) = P (δk = −1) = 1/2 and uj(n) = C1M(nt−1
n )

− 2(sj+1)

4sj+2

for C1 such that 3M2C2
1 = 2a2. Let j be any index in J̃ . Since

∫
ψ = 0

and when a is small enough (to guarantee that cj ≥ 0), cj is a density. Easy
calculations imply that

‖cj − cλ0‖2 = M2C2
1 (vnt−1

n
(τj))2 > a2 (vnt−1

n
)2.

Moreover, if a is small enough, we have 3 Cp
1 < 1 and

2j(sj+1−2/p)p
∑

k

∑
ε

|
∫

cjψ
ε
jk|p = 2j(sj+1−2/p)p

∑

k

∑
ε

|uj(n)|p

= 3Cp
1Mp ≤ Mp,

implying that cj ∈ bsj ,p,∞(M). Denote Aj,n(a) the set of densities

{c ∈ bsj ,p,∞(M) : inf
λ
‖c− cλ‖2 > a2(vnt−1

n
(τj))2}.
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and consider the variation between both distributions IPλ0 and IPΠ

V ar(IPλ0 , IPΠ) =
1
2

∫ ∣∣∣∣
dIPΠ

dIPλ0

− 1
∣∣∣∣ dIPλ0 ,

where
dIPΠ

dIPλ0

=
1

Nn

∑

j∈J̃

dIPj

dIPλ0

=
1

Nn

∑

j∈J̃

IE(n)
πj

[
cj

cλ0

].

Assuming that the following assertion holds

lim
n→∞ inf

j∈J̃
πj(c ∈ Aj,n(a)) = 1, (23)

we deduce that the left hand side (LHS) of relation (13) without the limit
is bounded from below by

LHS ≥ IPλ0(Dn = 1) + sup
sj∈Sn

sup
c∈Aj,n(a)

IPc(Dn = 0)

≥ 1− V ar(IPλ0 , IPΠ)(1 + on(1)),

as n large enough. Since the supports of the functions cj and cj′ are disjoint
for j 6= j′, one has

1− V ar(IPλ0 , IPΠ) ≥ 1− 1
2

1
N2

n

∑

j∈J̃

IEλ0




(∫ n∏

i=1

cj(Ui, Vi)
cλ0(Ui, Vi)

dπj(cj)

)2

− 1




≥ 1− on(1)

provided that

lim
n→∞

1
N2

n

∑

j∈J̃

IEλ0




(∫ n∏

i=1

cj(Ui, Vi)
cλ0(Ui, Vi)

dπj(cj)

)2

 = 0. (24)

Relation (13) is thus proved if (23) and (24) are satisfied. The remaining
proofs are given in the sequel.

9.3 Proof of Relation (23)

Let Λ′ be a subsect of Λ. We have

πj

(
inf
λ∈Λ

‖cj − cλ‖2 ≤ a2(vnt−1
n

(τj))2
)

≤ πj

(
inf

λ∈Λ/Λ′
‖cj − cλ‖2 ≤ a2(vnt−1

n
(τj))2

)

+ πj

(
inf

λ∈Λ′
‖cj − cλ‖2 ≤ a2(vnt−1

n
(τj))2

)
(25)

26



Consider the particular subset Λ′ defined by

Λ′ = {λ ∈ Λ : ‖cλ0 − cλ‖2 ≤ 6C2
1M2(vnt−1

n
(τj))2}.

Note that

λ ∈ Λ/Λ′ =⇒ ‖cλ − cj‖2 ≥ a2(vnt−1
n

(τj))2

due to the choice of C1. It implies that the first term in the right hand side
of (25) is null and then, it remains to prove that

lim
n→∞πj

(
inf

λ∈Λ′
‖cj − cλ‖2 ≤ a2(vnt−1

n
(τj))2

)
= 0. (26)

Since λ in Λ′, we get

‖cλ − cj‖2
2 = ‖cλ0 − cλ‖2 +

∑

k

∑
ε

uj(n)2 + 2
∑

k

∑
ε

δkuj(n)Bj,k,λ,λ0

≥ 3C2
1M2 (vnt−1

n
(τj))2 + 2

∑

k

δkuj(n)
∑

ε

Bj,k,λ,λ0 ,

where

Bj,k,λ,λ0 =
∫

ψε
j,k(cλ0 − cλ).

Therefore assertion (26) is equivalent to

lim
n→∞πj

(
inf

λ∈Λ′
2

∑

k

δkuj(n)Bj,k,λ,λ0 ≤ −a2(vnt−1
n

(τj))2
)

= 0.

or

lim
n→∞πj

(
sup
λ∈Λ′

2
∑

k

(−δk)uj(n)Bj,k,λ,λ0 ≥ a2(vnt−1
n

(τj))2
)

= 0.

Finally, relation (26) is proved due to assumption AInf2 and applying Bern-
stein inequality to

πj

(
2

∑

k

(−δk)uj(n)Bj,k,λ,λ0 ≥ a2(vnt−1
n

(τj))2
)

,

with i.i.d. centered random variables Zk = −δkBj,k,λ,λ0 . In particular, note
that |Zk| < K1vnt−1

n
(τj) and

∑
k Var(Zk) ≤ K2(vnt−1

n
(τj))2, where K1 and

K2 are positive constants.
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9.4 Proof of Relation (24)

Set

ln,π =
∫ n∏

i=1

cj(Ui, Vi)
cλ0(Ui, Vi)

dπj(cj).

Due to the fact that the functions ψε
j,k have disjoint support, it is possible

to rewrite cj as follows

cj = cλ0

∏

k

(1 + δkDj,k)

for

Dj,k = uj(n)
∑

ε

ψε
j,k

cλ0

.

Then,

ln,π =
∏

k

∫ n∏

i=1

(1 + δkDj,k(Ui, Vi))dπj(δk)

=
∏

k

1
2

{
n∏

i=1

(1 + Dj,k(Ui, Vi)) +
n∏

i=1

(1−Dj,k(Ui, Vi))

}
,

and

l2n,π =
∏

k

1
4

{
2

n∏

i=1

[
1 + D2

j,k(Ui, Vi)
]
+ 2

n∏

i=1

[
1−D2

j,k(Ui, Vi)
]

+H

(
Dj,k(Ui, Vi),

(
Dbt

j,k(Ut, Vt)
)

t∈{1,...,i−1,i+1,...,n}

)}
,

where bt is either 0 or 2. Due to the independence of the data and acting as
in Pouet (2000), it can be shown that

IEλ0

[
H

(
Dj,k(Ui, Vi),

(
Dbt

j,k(Ut, Vt)
)

t∈{1,...,i−1,i+1,...,n}

)]
= 0.

Therefore,

IEλ0 [l
2
n,π(Ui, Vi)] ≤

∏

k

{(
1 + IEλ0D

2
j,k(Ui, Vi)

)n +
(
1− IEλ0D

2
j,k(Ui, Vi)

)n}

≤
∏

k

cosh
(
nIEλ0D

2
j,k(Ui, Vi)

)
.
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Using the inequality log(cosh(u)) ≤ Ku2 where K is a fixed constant and
since cλ0 is bounded from below by m, one obtains

1
N2

n

∑

j∈J̃

exp(log(IEλ0 ln,π)2) ≤ 1
N2

n

∑

j∈J̃

exp

{
Kn2

∑

k

(
IEλ0D

2
j,k(Ui, Vi)

)2

}

≤ 1
N2

n

∑

j∈J̃

exp
{

32K

m2
n222juj(n)4

}

≤ log(n)κ

log(n)(1 + on(1))
,

where κ = K(3C2
1M2)2m−2 = 4Ka4m−2. Choosing a small enough and

κ < 1, Relation (24) is then proved.

10 Appendix A: Proof of Lemma 1

In this part, κ denotes any positive constant which may depend on φ, M
and on ‖c‖, ‖cλ‖.

10.1 Notations and Preliminaries

Let us define or recall some notations that will be used below. For any
k ∈ ZZ2, set

ξk(Xi, Yi) = φj,k

(
F̂ (Xi), Ĝ(Yi)

)
− φj,k (F (Xi), G(Yi))

ωλ
j,k(Xi, Yi) = φj,k(F (Xi), G(Yi))− cj,k(λ)

ω∞j,k(Xi, Yi) = φj,k(F (Xi), G(Yi))− cj,k,

where i is in I2. First, the localization property of the scaling function
implies that only few ξk(Xi, Yi) will be used since the others are zero. Indeed,
one has the following result

Lemma 4. For any k ∈ ZZ2, let us denote

Nj = card {i ∈ I2; ξk(Xi, Yi) 6= 0} .

Let δ > 0. For any level j such that

2j ≤ 2
3
√

δ + 1

(
n2

log(n2)

)1/2

,

one has

P(Nj > 2(2L + 3)n22−j)) ≤ K(n−δ
1 + n−δ

2 ).
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We refer to Genest et al. (2008a) for the proof of this lemma since a
similar result is established with an estimate F̂ built on the whole sam-
ple: it guarantees in particular that F̂ (X(i:n)) = i/n, where X(i:n) denotes
the i−th (among n) order statistic. In our case, the situation is different
since F̂ (X(i:n2)) is based on the observations lying in the subsample whose
indices are in I1 whereas it is calculated in an observation lying in the
subsample whose indices are in I2 ; nevertheless, applying the Dvoretsky–
Kiefer–Wolfovitz Inequality, the following deviation inequality holds. For
any ε > 0, P

F̂
= P

(∣∣∣F̂ (X(i:n2))− i
n2

∣∣∣ ≥ 2ε
)

is bounded from above by

P
F̂

≤ P
(∣∣∣F̂ (X(i:n2))− F (X(i:n2))

∣∣∣ ≥ ε
)

+ P
(∣∣∣F (X(i:n2))− F̃ (X(i:n2))

∣∣∣ ≥ ε
)

≤ P
(
‖F̂ − F‖∞ ≥ ε

)
+ P

(
‖F̃ − F‖∞ ≥ ε

)

≤ K
(
n−δ

1 + n−δ
2

)
,

as soon as we take ε =
√

δ log(n1)/(2n1)∨
√

δ log(n2)/(2n2). Here F̂ repre-
sents the empirical margin computed with the subsample whose indices in
I1 and F̃ , the empirical margin computed with the subsample whose indices
in I2.

10.1.1 Study of T̂j(λ)

Rewrite θ̂j,k(λ) in T̂j(λ) =
∑

k θ̂j,k(λ) as follows

θ̂j,k(λ) =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

ωλ
j,k(Xi1 , Yi1)ω

λ
j,k(Xi2 , Yi2).

For all i ∈ I2, one has IE(ωλ
j,k(Xi, Yi)) = cj,k − cj,k(λ), which implies that

IE(T̂j(λ)) =
∑

k

θj,k(λ) = Tj(λ).

Moreover for p 6= k, one obtains
IE(θ̂j,k(λ)θ̂j,p(λ))

=
1

(n2(n2 − 1))2

∑

i1 6=i2 6=i3 6=i4

IE
[
ωλ

j,k(Xi1 , Yi1)
]
IE

[
ωλ

j,p(Xi3 , Yi3)
]
IE

[
ωλ

j,k(Xi2 , Yi2)
]
IE

[
ωλ

j,p(Xi4 , Yi4)
]

+4
1

(n2(n2 − 1))2

∑

i1 6=i2 6=i3

IE
[
ωλ

j,k(Xi1 , Yi1)
]
IE

[
ωλ

j,p(Xi3 , Yi3)
]
IE

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

]

+2
1

(n2(n2 − 1))2

∑

i1 6=i2

IE
[
ωλ

j,k(Xi1 , Yi1)ω
λ
j,p(Xi1 , Yi1)

]
IE

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

]

≤ θj,k(λ)θj,p(λ) +
4

n2
(cj,k − cj,k(λ)) (cj,p − cj,p(λ))

[∫ (
φj,k −

∫
φj,kcλ

) (
φj,p −

∫
φj,pcλ

)
c

]

+
2

n2(n2 − 1)

[∫ (
φj,k −

∫
φj,kcλ

) (
φj,p −

∫
φj,pcλ

)
c

]2

,
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which implies that

Var(T̂j(λ)) = IE

(∑

k

θ̂j,k(λ)

)2

−
(

IE
∑

k

θ̂j,k(λ)

)2

≤ 4

n2

∑

k,p

(cj,k − cj,k(λ)) (cj,p − cj,p(λ))

[∫ (
φj,k −

∫
φj,kcλ

) (
φj,p −

∫
φj,pcλ

)
c

]

+
2

n2(n2 − 1)

∑

k,p

[∫ (
φj,k −

∫
φj,kcλ

) (
φj,p −

∫
φj,pcλ

)
c

]2

.

Applying the Hölder inequality and the consequence of the Parseval Equal-
ity, we get

∑

kp

[∫ (
φj,k −

∫
φj,kcλ

) (
φj,p −

∫
φj,pcλ

)
c

]2

≤ 22


∑

k,p

[∫
φj,kφj,pc

]2

+ 2
∑

k,p

[∫
φj,kcλ

∫
φj,pc

]2

+

(∑

k

[∫
φj,kcλ

]2
)2




≤ 22

((∑

k

∫
φ2

j,kc

)2

+ 2

∫
c2

∫
c2

λ +

(∫
c2

λ

)2
)
≤ κ 22j .

We conclude that

Var(T̂j(λ)) ≤ κ


 4

n2


∑

k,p

θj,k(λ)θj,p(λ)




1/2

2j +
22j

n2(n2 − 1)




≤ κ

(
2j

n2
Tj(λ) +

22j

n2
2

)
.

which is the announced result for T̂j(λ).

10.1.2 Study of T♠j and T♣j (λ)

Let us denote

Ai1 = [ξk(Xi1 , Yi1)] , Di1 =
∑

k,p

(IE [ξk(Xi1 , Yi1)ξp(Xi1 , Yi1)])
2

Bi1,i2 =
∑

k

[ξk(Xi1 , Yi1)ξk(Xi2 , Yi2 ] , Ci1,i2 = ξk(Xi1 , Yi1)ξp(Xi2 , Yi2).

We need the following results which are stated in the lemma below

Lemma 5. Assume that the scaling function is q-differentiable. For any
level j ≤ j∞, there exists some positive constant κ depending on φ, its
derivatives and on ‖c‖∞ (which might be ‖cλ‖∞ for some λ ∈ Λ) such that
for any distinct indices i1, i2, one obtains

IE|Ai1 | ≤ κ

(
log(n1)

n1

)1/2

(27)
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IE|Bi1,i2 | ≤ κ22j

(
log(n1)

n1

)
, IE|Ci1,i2 | ≤ κ

(
log(n1)

n1

)
(28)

|Di1 | ≤ 26j

(
log(n1)

n1

)2

.

We prove Relation (27) in the next section, Relations (28) are proven in
Genest et al. (2008a). We have

IET♠j =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

IE[Bi1,i2 ].

Using Lemma 4 and Lemma 5, it follows

IE|T♠j | ≤ 1
n2(n2 − 1)

(n22−j)2 22j

(
log(n1)

n1

)
≤

(
log(n1)

n1

)
.

Moreover, we get

T♣j (λ) =
1

n2(n2 − 1)

∑

i1,i2∈I2

i1 6=i2

∑

k

[
ξk(Xi1 , Yi1)ω

λ
j,k(Xi2 , Yi2)

]
.

By Hölder Inequality and from lemmas 4 and 5, one obtains

IE|T♣j (λ)| ≤ 1
n2(n2 − 1)

n2∑

i1,i2∈I2

i1 6=i2

(∑

k

(IE(Ai))2
∑

k

(IEωλ
j,k(Xi2 , Yi2))

2

)1/2

.

Remembering that IEωλ
j,k(Xi2 , Yi2) = (cj,k− cj,k(λ)) for any index i2, we get

IE|T♣j (λ)| ≤ 1
n2(n2 − 1)

(n22−j)n2

[
22j log(n1)

n1
Tj(λ)

]1/2

≤ K

(
log(n1)

n1
Tj(λ)

)1/2

.

Let us study the moments of T♣j (λ) under IPλ. Since IEλωλ
j,k(Xi, Yi) = 0 for

any k and i, we obviously have IEλT♣j (λ) = 0 and

IEλ(T♣j (λ))2 =
(

1
n2(n2 − 1)

)2 ∑

i1 6=i2

Ti1,i2 +
(

1
n2(n2 − 1)

)2 ∑

i1 6=i2 6=i3

Si1,i2,i3,

where

Ti1,i2 =
∑

k,p

(
IEλ [ξk(Xi1 , Yi1)ξp(Xi1 , Yi1)] IEλ

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

])
,

Si1,i2,i3 =
∑

k,p

(
IEλ [ξk(Xi1 , Yi1)ξp(Xi2 , Yi2)] IEλ

[
ωλ

j,k(Xi3 , Yi3)ω
λ
j,p(Xi3 , Yi3)

])
.
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By Hölder Inequality, we have

Ti1,i2 =
∑

k,p

IEλ [ξk(Xi1 , Yi1)ξp(Xi1 , Yi1)] IEλ

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

]

≤ D
1/2
i1


∑

k,p

(
IEλ

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

])2




1/2

With Parseval Equality, we get

∑

k,p

(
IEλ

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

])2
≤

∑

k,p

(∫
φj,kφj,pcλ

)2

≤ K
∑

k

∫
φ2

j,kc
2
λ ≤ K 22j ,

which combining with Lemma 5, implies that

Ti1,i2 ≤ K

(
26j

(
log(n1)

n1

)2
)1/2 (

22j
)1/2 ≤ 24j

(
log(n1)

n1

)
.

In the same way,

Si1,i2,i3 ≤ K


∑

k,p

(IEλCi1,i2)
2




1/2 
∑

k,p

(
IEλ

[
ωλ

j,k(Xi2 , Yi2)ω
λ
j,p(Xi2 , Yi2)

])2




1/2

≤ (
22j

)1/2

(
24j

(
log(n1)

n1

)2
)1/2

≤ 23j

(
log(n1)

n1

)
.

¿From Lemma 4, one has

IEλ(T♣j (λ))2 ≤ K
1

n2
2(n2 − 1)2

(n22−j)n224j

(
log(n1)

n1

)

+K
1

n2
2(n2 − 1)2

(n22−j)2n223j

(
log(n1)

n1

)

≤ K 2j

(
log(n1)
n2n1

)
.

10.2 Proof of Lemma 5

The following expansion is crucial because it allows to reduce the study to
univariate variables.

ξk(Xi, Yi) = ξk1(Xi)ξk2(Yi) (29)
+ξk1(Xi)φjk2 (G(Yi)) + ξk2(Yi)φjk1 (F (Xi)) ,
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where the univariate statistics ξk1(Xi) and ξk2(Yi) are defined as follows

ξk1(Xi) = φj,k1

(
F̂ (Xi)

n1

)
− φj,k1(F (Xi))

ξk2(Yi) = φj,k2

(
Ĝ(Yi)

n1

)
− φj,k1(G(Yi)).

Assuming that φ is continuously q−differentiable, we get

ξk1(Xi) = ẑk1(Xi) + ŵk1(Xi),

where

ẑk1(Xi) =
q−1∑

`=1

2j`

`!
(F̂ (Xi)− F (Xi))` φ

(`)
j,k1

(F (Xi))

and

ŵk1(Xi) = 2qj

∫ F (Xi)

F̂ (Xi)
φ

(q)
j,k1

(t) (F (Xi)− t)q−1dt.

A direct application of the Dvoretsky, Kiefer and Wolfovitz inequality leads
to the following bound

P (‖F̂ − F‖∞ > ε) ≤ K exp(−2n1ε
2) ≤ Kn−δ

1 ,

as soon as ε =
√

0.5 δ log(n1)/n1. In the sequel, we take such an ε with δ
large enough. Since j ≤ j∞ where j∞ is defined in (14), observe that 2jε ≤ 1
and then we get

|ẑk1(Xi)| ≤ K 2jε max
`=1,...q−1

|φ(`)
j,k1

(F (Xi))|(1 + oP (1))

|ŵk1(Xi)| ≤ K 2(q+1/2)jεq(1 + oP (1))

which leads to the following bound

|ξk1(Xi)| ≤ K

(
2(q+1/2)jεq + 2jε max

`=1,...q−1
|φ(`)

j,k1
(F (Xi))|

)
(1 + oP (1)).

The same kind of result obviously holds for ξk2(Yi). In the sequel, we need
the following evaluations (which also hold for any derivatives of φ). Using
expansion (29), we get

ξk(Xi, Yi) = S1 + S2,

where

S1 = ξk1(Xi)ξk2(Yi),
S2 = ξk1(Xi)φj,k2 (G(Yi)) + ξk2(Yi)φj,k1 (F (Xi)) .
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Using (30), we get

IE|S1| ≤ K
(
2(2q+1)jε2q + 2(q+1)jεq+1 + 2jε2

)
,

IE|S2| ≤ K
(
2qjεq + ε

)
.

If 2j ≤ (n1/ log(n1))1/2−1/2q, we obtain IE|ξk(Xi, Yi)| ≤ ε which ends the
proof.

11 Appendix B : Proof of Lemma 2

Applying Bernstein inequality leads to prove Lemma 2

IPc

(|T ¦j (λ)| ≥ x
) ≤ exp−

(
n2

2x
2/2

22jTj(λ) + n2x2jTj(λ)1/2/3

)

provided that T ¦j (λ) = n−1
2

∑
i∈I2

Zi where

Zi =
∑

k

(φjk(F (Xi), G(Yi))− cjk) (cjk − cjk(λ)) ,

EcZi = 0,

|Zi| ≤
(∑

k

(φjk(F (Xi), G(Yi))− cjk)
2
∑

k

(cjk − cjk(λ))2
)1/2

≤ K
((

2j
)2

Tj(λ)
)1/2

≤ K 2jTj(λ)1/2,

Vc(Zi) ≤
∑

k,p

E (φjk(F (Xi), G(Yi))− cjk) (φjp(F (Xi), G(Yi))− cjp)

× (cjk − cjk(λ)) (cjp − cjp(λ))

≤

∑

k,p

E2 (φjk(F (Xi), G(Yi))− cjk) (φjp(F (Xi), G(Yi))− cjp)




1/2

×
∑

k

(cjk − cjk(λ))2

≤ K
(
24j

(
2j2j2−2j

)2
)1/2

Tj(λ) ≤ K 22jTj(λ),

where K is some positive constant depending on L, ‖φ‖∞ and ‖c‖∞.

12 Appendix C: Proof of Lemma 3

12.1 U-Statistic

Let us first recall the result of Giné et al. (2000).
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Proposition 1. (Theorem 3.3 p. 21 Giné et al. (2000))
It exists an universal positive constant Kg < ∞ such that, if Ω is a bounded
canonical kernel of two variables for the i.i.d. Zi1 , Zi2, i1, i2 ∈ {1, . . . , ñ},
where ñ ∈ IN, for any x > 0, we have

IP


|

∑

i1,i2

Ω(Zi1 , Zi2)| > x


 ≤ Kg exp

(
− 1

K g
min

{
x2

C2
,

x

D
,
( x

B

)2/3
,
( x

A

)1/2
})

,

where

A = ‖Ω(·, ·)‖∞, B2 = ñ
[‖IE[Ω2(Z1, ·)]‖∞ + ‖IEΩ2(·, Z2)‖∞

]
,

C2 = ñ2IE[(Ω(Z1, Z2))2]

and

D = ñ sup
Ω1,Ω2

{IE[Ω(Z1, Z2)Ω1(Z1)Ω2(Z2)] : IE[Ω2
1(Z1)] ≤ 1; IE[Ω2

2(Z2)] ≤ 1}.

We apply this proposition for Zi = (F (Xi), G(Yi)), ñ = n2 and the kernel

Ωc̃ (Zi1 , Zi2) =
∑

k

{φj,k (Zi1)− IEc̃[φj,k (Zi1)]} × {φj,k (Zi2)− IEc̃[φj,k (Zi2)]} ,

which is considered under the distribution IPc̃ where c̃ is either cλ or c. The
quantities A, B, C and D are evaluated in the following lemma which is
proved in the next section.

Lemma 6. There exists some positive constant K1 larger than either
(
12L2‖φ‖2

∞
) ∨ (2‖c̃‖∞) ∨ (

2L2‖φ‖2
∞

) ∨ (
4‖c̃‖∞(‖c̃‖∞ + 3L4‖φ‖2

∞))
)

such that

A ≤ K122j , B2 ≤ K1 n222j , C2 ≤ K1 n2
22

2j , D ≤ K1 n2,

where c̃ is either cλ or c.

Again define c̃ as cλ or c, then applying both the result of Giné et al.
(2000) and Lemma 6, for any level j and any x ≥ 2j((n2−1)n2)−1/2

√
log(log(n2)),

it immediately follows that

IPc̃


|

1

n2(n2 − 1)

∑
i1,i2∈I2

i1 6=i2

Ωc̃ (Zi1 , Zi2) | > µx


 ≤ Kg exp (−δ log(log(n2))) .

which ends the proof of Lemma 3
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12.2 Proof of Lemma 6

Let us denote (U, V ) = (F (X), G(Y )) any pair of random variables whose
marginal distribution are both uniform on [0, 1]. Denote c̃ the copula density
which is cλ or c; in the same spirit, the coefficients c̃j,k stand for cj,k(λ) or
cj,k. Recall that

cj,k(λ) = IEλ [φj,k(F (X), G(Y ))] =
∫

cλ(u, v)φj,k(u, v)dudv.

cj,k = IE [φj,k(F (X), G(Y ))] =
∫

c(u, v)φj,k(u, v)dudv.

Note that
∑

k,p

IEc̃[φj,k(Ui1 , Vi1)φj,p(Ui1 , Vi1)] ≤ 22j ,

∑

k

(IEc̃[φj,k(U, V )])2 =
∑

k

c̃2
j,k ≤ ‖c̃‖2 ≤ M.

We get

A = ‖
∑

k

(φj,k(u1, v1)− IEc̃[φj,k(U, V )]) (φj,k(u2, v2)− IEc̃[φj,k(U, V )]) ‖∞

≤ ‖
∑

k

φj,k(u1, v1)φj,k(u2, v2)‖∞ + 2‖
∑

k

φj,k(u1, v1)IEc̃[φj,k(U, V )]‖∞

+‖
∑

k

(IEc̃[φj,k(U, V )])2 ‖∞

≤ L2 22j‖φ‖2
∞ + 2L2‖φ‖∞‖c̃‖22j + ‖c̃‖2

2 ≤ K22j ,

where K ≥ 2L2‖φ‖2∞ and

B2 = 2n2

∥∥∥∥∥∥
∑

k,p

IEc̃ [(φj,k(Ui1 , Vi1)− IEc̃[φj,k(U, V )]) (φj,p(Ui1 , Vi1)− IEc̃[φj,p(U, V )])]

× (φj,k(u2, v2)− IEc̃[φj,k(U, V )]) (φj,p(u2, v2)− IEc̃[φj,p(U, V )])‖∞

≤ 2n2

∥∥∥∥∥∥
∑

k,p

∣∣∣∣
∫

φj,kφj,pc̃−
∫

φj,k c̃

∫
φj,p c̃

∣∣∣∣ (φj,k(u2, v2)− IEc̃[φj,k(U, V )])

× (φj,p(u2, v2)− IEc̃[φj,p(U, V )])‖∞

≤ 2n2(2‖c̃‖∞)




∥∥∥∥∥∥
∑

k,p

φj,k(u2, v2)φj,p(u2, z2)

∥∥∥∥∥∥
∞

+ 2

∥∥∥∥∥∥
∑

k,p

φj,k(u2, v2)IEc̃[φj,k(U, V )]

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
∑

k,p

IEc̃[φj,k(U, V )]IEc̃[φj,p(U, V )]

∥∥∥∥∥∥
∞




≤ (4n2‖c̃‖∞)
(
22jL42‖φ‖2

∞ + 2L22j‖φ‖∞ + 22j‖c̃‖∞
) ≤ K n222j
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where K ≥ 4‖c̃‖∞(‖c̃‖∞ + 3L4‖φ‖2∞). Moreover,

C2 = n2
2

∑

k,p

IEc̃ [(φj,k(Ui1 , Vi1)− IEc̃[φj,k(U, V )]) (φj,p(Ui1 , Vi1)− IEc̃[φj,p(U, V )])]

×IEc̃ [(φj,k(Ui2 , Vi2)− IEc̃[φj,k(U, V )]) (φj,p(Ui2 , Vi2)− IEc̃[φj,p(U, V )])]

= n2
2

∑

k,p

(IEc̃ [φj,k(Ui1 , Vi1)φj,p(Ui1 , Vi1)]− IEc̃ [φj,k(U, V )] IEc̃ [φj,p(U, V )])2

= n2
2

∑

k,p

(∫
φj,kφj,p c̃−

∫
φj,k c̃

∫
φj,p c̃

)2

≤ n2
2

∑

k,p

(∫
φj,kφj,p c̃

)2

+ n2
2

(∑

k

(∫
φj,k c̃

)2
)2

≤ n2
2

∑

k

∫
φ2

j,k c̃2 + n2
2

(∫
c̃2

)2

≤ ‖c̃‖2
∞n2

22
2j + n2

2 ‖c̃‖4
2 ≤ K n2

22
2j ,

where K ≥ 2‖c̃‖2∞. Denote uΩ1,Ω2 = IEc̃[Ωc̃(Z1, Z2)Ω1,c̃(Z1)Ω2,c̃(Z2)] and for
i = 1, 2, put

ci(k) =
∫

(φj,k − IEc̃φj,k(U, V ))Ωi,c̃ c̃.

By Hölder Inequality, we get

uΩ1,Ω2 =
∑

k

(∫
(φj,k − IEc̃φj,k(U, V ))Ω1,c̃ c̃

)(∫
(φj,k − IEc̃φj,k(U, V ))Ω2,c̃ c̃

)

≤
√∑

k

(c1(k))2
∑

k

(c2(k))2.

Applying again the inequality of Hölder to
∑

k(c1(k))2 (the same occurs for
c2(k)), one gets
∑

k

(c1(k))2 ≤
∑

k

(
∫

(φj,k − IEc̃φj,k(U, V ))Ω1,c̃ c̃1I
[
k1
2j ,

2N−1+k1
2j ]×[

k2
2j ,

2N−1+k2
2j ]

)2

≤
∑

k

(∫
(φj,k − IEc̃φj,k(U, V ))2c̃

)
×

(∫
(Ω1,c̃)2 1I

[
k1
2j ,

2L−1+k1
2j ]×[

k2
2j ,

2L−1+k2
2j ]

c̃

)

≤ ‖c̃‖∞
∫

(Ω1,c̃)2 c̃
∑

k

1I
[
k1
2j ,

2L−1+k1
2j ]×[

k2
2j ,

2L−1+k2
2j ]

≤ 12‖φ‖2
∞L2 (30)

since IEc̃(Ω1,c̃(U))2) ≤ 1. It follows that D ≤ K n2, where K > 12L2‖φ‖2∞.
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Family parameter grid Cardinal α̂ Decision
Gumbel 1.05 : 0.1 : 1.95 10 0.00 Yes
Gaussian 0.0 : 0.1 : 0.9 10 0.04 Yes
Clayton 0.5 : 0.1 : 1.4 10 0.42 Yes
Frank 1.5 : 0.5 : 6.0 10 1.00 No

Gumbel 1.0 : 0.05 : 1.95 20 0.00 Yes
Gaussian 0.0 : 0.05 : 0.95 20 0.00 Yes
Clayton 0.5 : 0.05 : 1.45 20 0.54 No
Frank 1.25 : 0.25 : 6.0 20 1.00 No

Gumbel 1.45 1 0.10 Yes
Gaussien 0.48 1 0.12 Yes
Clayton 0.92 1 0.86 No
Frank 3.20 1 1.00 No

Gumbel 1.36 (1.07%) 1 0.02 Yes
Gaussien 0.45 (3.27%) 1 0.08 Yes
Clayton 0.41 (13.15%) 1 0.62 No
Frank 2.88 (3.93%) 1 1.00 No

Table 1: Empirical probability α̂ to reject the fit to a fixed parametrical
family given in the first column and Decision at the prescribed level α =
5%. Multivariate null hypotheses (first and second part); H0 : c = cλ̂,
where λ̂ is obtained by inversion of the empirical Kendall’s tau (third part);
H0 : c = cλ̃, where λ̃ is obtained by minimizing the ASE quantity which is
given into brackets (fourth part).
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Data Clayton Data Gumbel Data Gaussian Data Frank
λ = 0.6, τ = 0.23 λ = 1.5, τ = 0.33 λ = 0.4, τ = 0.26 λ = 2.5, τ = 0.25

λ0 τ0 α̂ λ0 τ0 α̂ λ0 τ0 α̂ λ0 τ0 α̂

0.05 0.02 1.00 1.05 0.04 1.00 0.05 0.03 1.00 0.50 0.06 0.98
0.10 0.04 0.96 1.10 0.09 1.00 0.10 0.06 0.98 1.00 0.10 0.86
0.15 0.07 0.98 1.15 0.13 1.00 0.15 0.09 0.92 1.50 0.14 0.32
0.20 0.09 0.76 1.20 0.16 0.94 0.20 0.12 0.62 2.00 0.22 0.00
0.25 0.11 0.54 1.25 0.20 0.68 0.25 0.16 0.22 2.50 0.25 0.00
0.30 0.13 0.20 1.30 0.23 0.22 0.30 0.19 0.00 3.00 0.30 0.00
0.35 0.14 0.16 1.35 0.25 0.08 0.35 0.22 0.00 3.50 0.35 0.20
0.40 0.16 0.06 1.40 0.28 0.00 0.40 0.26 0.00 4.00 0.38 0.58
0.45 0.18 0.00 1.45 0.31 0.00 0.45 0.29 0.00 4.50 0.41 1.00
0.50 0.20 0.00 1.50 0.33 0.00 0.50 0.33 0.02
0.80 0.28 0.00 1.55 0.35 0.00 0.55 0.37 0.36
0.85 0.29 0.06 1.60 0.37 0.00 0.60 0.40 0.86
0.90 0.31 0.10 1.65 0.39 0.04 0.65 0.45 1.00
0.95 0.32 0.20 1.70 0.41 0.16 0.70 0.49 1.00
1.00 0.33 0.38 1.75 0.42 0.26
1.05 0.34 0.50 1.80 0.44 0.58
1.10 0.35 0.66 1.85 0.45 0.72
1.15 0.36 0.78 1.90 0.47 0.88
1.20 0.37 0.88 1.95 0.48 0.98
1.25 0.38 0.96 2.00 0.50 0.98
1.30 0.39 0.96 2.05 0.51 1.00
1.35 0.40 1.00 2.10 0.52 1.00

Table 2: Empirical power α̂ for the test of H0 : c = cλ0 against H1 : c = cλ

(λ is given in the first line); cλ0 and cλ belong to the same parametrical
family; n = 1024; prescribed level 5%; τ and τ0 are the Kendall’s tau.
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Data Student (4) Data Gumbel Data Gaussian Data Frank
λ = 0.95, τ = 0.79 λ = 4, τ = 0.75 λ = −0.9, τ = −0.71 λ = 14, τ = 0.75

λ0 τ0 α̂ λ0 τ0 α̂ λ0 τ0 α̂ λ0 τ0 α̂

0.90 0.71 0.48 2.50 0.60 1.00 -0.95 -0.79 0.98 8.50 0.62 1.00
0.91 0.73 0.18 2.60 0.61 0.98 -0.90 -0.71 0.00 9.00 0.63 0.94
0.92 0.74 0.04 2.70 0.62 0.90 -0.85 -0.64 0.10 9.50 0.64 0.78
0.93 0.76 0.00 2.80 0.64 0.70 -0.80 -0.59 0.94 10.00 0.66 0.38
0.94 0.78 0.00 2.90 0.65 0.40 -0.75 -0.53 1.00 10.50 0.68 0.14
0.95 0.79 0.00 3.00 0.66 0.24 -0.70 -0.49 1.00 11.00 0.70 0.04
0.96 0.82 0.02 3.10 0.67 0.10 11.50 0.71 0.00
0.97 0.84 0.54 3.20 0.68 0.02 14.00 0.72 0.00
0.98 0.87 1.00 3.30 0.69 0.00 16.00 0.77 0.00
0.99 0.91 1.00 3.40 0.70 0.00 16.50 0.78 0.02

3.50 0.71 0.00 17.00 0.78 0.02
3.60 0.72 0.00 17.50 0.79 0.08
3.70 0.72 0.00 18.00 0.79 0.12
3.80 0.73 0.00 18.50 0.80 0.38
3.90 0.74 0.00 19.00 0.81 0.38
4.00 0.75 0.00 19.50 0.81 0.60
4.10 0.75 0.02 20.00 0.81 0.76
4.20 0.76 0.00 20.50 0.82 0.84
4.30 0.76 0.90 21.00 0.82 0.94
4.40 0.77 1.00 21.50 0.82 0.98

22.00 0.83 0.99

Table 3: Empirical power α̂ for the test of H0 : c = cλ0 against H1 : c = cλ

(λ is given in the first line); cλ0 and cλ belong to the same parametrical
family; n = 1024; prescribed level 5%; τ and τ0 are the Kendall’s tau.
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Copula for fit Data τ = 0.25 τ = 0.50 τ = 0.75
to cλ0

Gumbel Clayton 0.98 (0.72) 1.00 (0.99) 1.00 (1.00)
Gumbel 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)
Frank 0.12 (0.15) 0.50 (0.40 ) 0.94 (0.84)
Normal 0.02 (0.10) 0.08 (0.18) 0.48 (0.61)
Student(4) 0.24 (0.14) 0.10 (0.22) 0.28 (0.55)

Clayton Clayton 0.00 (0.05) 0.96 (0.05) 1.00 (0.05)
Gumbel 0.94 (0.86) 1.00 (1.00) 1.00 (1.00)
Frank 0.38 (0.56) 1.00 (0.96) 1.00 (1.00)
Normal 0.16 (0.50) 1.00 (0.93) 1.00 (1.00)
Student(4) 0.48 (0.56) 1.00 (0.95) 1.00 (1.00)

Frank Clayton 0.30 (0.40) 1.00 (0.89) 1.00 (0.97)
Gumbel 0.02 (0.33) 0.32 (0.63) 0.24 (0.82)
Frank 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)
Normal 0.00 (0.08) 0.02 (0.20) 0.02 (0.41)
Student(4) 0.28 (0.18) 0.18 (0.08) 0.08 (0.06)

Normal Clayton 0.20 (0.31) 1.00 (0.80) 1.00 (0.92)
Gumbel 0.02 (0.24) 0.08 (0.38) 0.02 (0.38)
Frank 0.00 (0.08) 0.02 (0.20) 0.14 (0.42)
Normal 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)
Student(4) 0.24 (0.10) 0.02 (0.08) 0.00 (0.06)

Student(4) Clayton 0.86 (0.27) 1.00 (0.77) 1.00 (0.93)
Gumbel 0.42 (0.19) 0.08 (0.34) 0.02 (0.42)
Frank 0.50 (0.09) 0.24 (0.27) 0.32 (0.41)
Normal 0.16 (0.05) 0.00 (0.04) 0.00 (0.04)
Student(4) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05)

Table 4: Empirical power for the test of H0 : c = cλ0 at the given level
α = 5% where cλ0 is specified in the first column and the data are issue
from a copula density specified in the second column. The parameter of
each copula density is chosen such that the Kendall’s tau is respectively
τ = 0.25, 0.50, 0.75. 44


